This does a 'fit_sort' whenever the state is changed. fit_sort effectively sorts the actions by distance+cost so that the cost is actually present unlike the original algorithm.

master
Zed A. Shaw 2 weeks ago
parent c014e65c13
commit c1aba2d5c8
  1. 31
      ai.cpp
  2. 2
      ai.hpp
  3. 20
      goap.cpp
  4. 2
      tests/ai.cpp
  5. 2
      tests/combat.cpp

@ -155,6 +155,7 @@ namespace ai {
} }
void set(State& state, std::string name, bool value) { void set(State& state, std::string name, bool value) {
// resort by best fit
state.set(state_id(name), value); state.set(state_id(name), value);
} }
@ -162,39 +163,32 @@ namespace ai {
return state.test(state_id(name)); return state.test(state_id(name));
} }
ai::Action& EntityAI::best_fit() { void EntityAI::fit_sort() {
dbc::check(plan.script.size() > 0, "empty action plan script"); if(active()) {
int lowest_cost = plan.script[0].cost; std::sort(plan.script.begin(), plan.script.end(),
size_t best_action = 0; [&](auto& l, auto& r) {
int l_cost = l.cost + (!l.can_effect(start) * ai::SCORE_MAX);
for(size_t i = 0; i < plan.script.size(); i++) { int r_cost = r.cost + (!r.can_effect(start) * ai::SCORE_MAX);
auto& action = plan.script[i]; return l_cost < r_cost;
if(!action.can_effect(start)) continue; });
if(action.cost < lowest_cost) {
lowest_cost = action.cost;
best_action = i;
}
} }
return plan.script[best_action];
} }
bool EntityAI::wants_to(std::string name) { bool EntityAI::wants_to(std::string name) {
ai::check_valid_action(name, "EntityAI::wants_to"); ai::check_valid_action(name, "EntityAI::wants_to");
dbc::check(plan.script.size() > 0, "empty action plan script"); return plan.script.size() > 0 && plan.script[0].name == name;
return best_fit().name == name;
} }
bool EntityAI::active() { bool EntityAI::active() {
if(plan.script.size() == 1) { if(plan.script.size() == 1) {
return plan.script[0] != FINAL_ACTION; return plan.script[0] != FINAL_ACTION;
} else { } else {
return plan.script.size() == 0; return plan.script.size() != 0;
} }
} }
void EntityAI::set_state(std::string name, bool setting) { void EntityAI::set_state(std::string name, bool setting) {
fit_sort();
ai::set(start, name, setting); ai::set(start, name, setting);
} }
@ -204,6 +198,7 @@ namespace ai {
void EntityAI::update() { void EntityAI::update() {
plan = ai::plan(script, start, goal); plan = ai::plan(script, start, goal);
fit_sort();
} }
AIProfile* profile() { AIProfile* profile() {

@ -23,7 +23,7 @@ namespace ai {
EntityAI() {}; EntityAI() {};
bool wants_to(std::string name); bool wants_to(std::string name);
ai::Action& best_fit(); void fit_sort();
bool active(); bool active();

@ -4,6 +4,8 @@
#include "stats.hpp" #include "stats.hpp"
#include <queue> #include <queue>
// #define DEBUG_CYCLES 1
namespace ai { namespace ai {
using namespace nlohmann; using namespace nlohmann;
@ -63,11 +65,8 @@ namespace ai {
} }
} }
inline void path_invariant(std::unordered_map<Action, Action>& came_from, Action& current) { inline void path_invariant(std::unordered_map<Action, Action>& came_from, Action current) {
#if defined(NDEBUG) #if defined(DEBUG_CYCLES)
(void)came_from; // disable errors about unused
(void)current;
#else
bool final_found = current == FINAL_ACTION; bool final_found = current == FINAL_ACTION;
for(size_t i = 0; i <= came_from.size() && came_from.contains(current); i++) { for(size_t i = 0; i <= came_from.size() && came_from.contains(current); i++) {
@ -79,6 +78,9 @@ namespace ai {
dump_came_from("CYCLE DETECTED!", came_from, current); dump_came_from("CYCLE DETECTED!", came_from, current);
dbc::sentinel("AI CYCLE FOUND!"); dbc::sentinel("AI CYCLE FOUND!");
} }
#else
(void)came_from; // disable errors about unused
(void)current;
#endif #endif
} }
@ -156,15 +158,21 @@ namespace ai {
auto neighbor = neighbor_action.apply_effect(current.state); auto neighbor = neighbor_action.apply_effect(current.state);
if(closed_set.contains(neighbor)) continue; if(closed_set.contains(neighbor)) continue;
// BUG: no matter what I do cost really doesn't impact the graph
// Additionally, every other GOAP implementation has the same problem, and
// it's probably because the selection of actions is based more on sets matching
// than actual weights of paths. This reduces the probability that an action will
// be chosen over another due to only cost.
int d_score = d(current.state, neighbor) + neighbor_action.cost; int d_score = d(current.state, neighbor) + neighbor_action.cost;
int tentative_g_score = g_score[current.state] + d_score; int tentative_g_score = g_score[current.state] + d_score;
int neighbor_g_score = g_score.contains(neighbor) ? g_score[neighbor] : SCORE_MAX; int neighbor_g_score = g_score.contains(neighbor) ? g_score[neighbor] : SCORE_MAX;
if(tentative_g_score < neighbor_g_score) { if(tentative_g_score + neighbor_action.cost < neighbor_g_score) {
came_from.insert_or_assign(neighbor_action, current.action); came_from.insert_or_assign(neighbor_action, current.action);
g_score.insert_or_assign(neighbor, tentative_g_score); g_score.insert_or_assign(neighbor, tentative_g_score);
ActionState neighbor_as{neighbor_action, neighbor}; ActionState neighbor_as{neighbor_action, neighbor};
int score = tentative_g_score + h(neighbor, goal); int score = tentative_g_score + h(neighbor, goal);

@ -205,7 +205,5 @@ TEST_CASE("Confirm EntityAI behaves as expected", "[ai]") {
enemy.set_state("in_combat", true); enemy.set_state("in_combat", true);
enemy.set_state("health_good", false); enemy.set_state("health_good", false);
enemy.update(); enemy.update();
auto& best = enemy.best_fit();
REQUIRE(best.name == "run_away");
REQUIRE(enemy.wants_to("run_away")); REQUIRE(enemy.wants_to("run_away"));
} }

@ -19,8 +19,10 @@ TEST_CASE("cause scared rat won't run away bug", "[combat-fail]") {
ai::EntityAI rat("Enemy::actions", ai_start, ai_goal); ai::EntityAI rat("Enemy::actions", ai_start, ai_goal);
rat.set_state("tough_personality", false); rat.set_state("tough_personality", false);
rat.set_state("health_good", false); rat.set_state("health_good", false);
REQUIRE(!rat.active());
battle.add_enemy(rat_id, rat); battle.add_enemy(rat_id, rat);
battle.plan(); battle.plan();
REQUIRE(rat.active());
rat.dump(); rat.dump();
REQUIRE(rat.wants_to("run_away")); REQUIRE(rat.wants_to("run_away"));
} }

Loading…
Cancel
Save