Gave up on trying to get the GOAP algorithm to correctly apply the cost structure to competing choices, and instead I take the resulting action list and simply find the next best one based on cost.

master
Zed A. Shaw 1 day ago
parent 52f45e1d45
commit c014e65c13
  1. 4
      Makefile
  2. 26
      ai.cpp
  3. 2
      ai.hpp
  4. 1
      ai_debug.cpp
  5. 1
      ai_debug.hpp
  6. 2
      assets/ai.json
  7. 2
      assets/enemies.json
  8. 11
      goap.cpp
  9. 3
      tests/ai.cpp
  10. 17
      tests/combat.cpp
  11. 4
      tests/rituals.cpp

@ -22,7 +22,7 @@ tracy_build:
meson compile -j 10 -C builddir
test: build
./builddir/runtests "[combat]"
./builddir/runtests
run: build test
powershell "cp ./builddir/zedcaster.exe ."
@ -41,7 +41,7 @@ clean:
meson compile --clean -C builddir
debug_test: build
gdb --nx -x .gdbinit --ex run --args builddir/runtests.exe -e "[combat]"
gdb --nx -x .gdbinit --ex run --args builddir/runtests.exe -e
win_installer:
powershell 'start "C:\Program Files (x86)\solicus\InstallForge\bin\ifbuilderenvx86.exe" win_installer.ifp'

@ -162,13 +162,28 @@ namespace ai {
return state.test(state_id(name));
}
AIProfile* profile() {
return &AIMGR.profile;
ai::Action& EntityAI::best_fit() {
dbc::check(plan.script.size() > 0, "empty action plan script");
int lowest_cost = plan.script[0].cost;
size_t best_action = 0;
for(size_t i = 0; i < plan.script.size(); i++) {
auto& action = plan.script[i];
if(!action.can_effect(start)) continue;
if(action.cost < lowest_cost) {
lowest_cost = action.cost;
best_action = i;
}
}
return plan.script[best_action];
}
bool EntityAI::wants_to(std::string name) {
ai::check_valid_action(name, "EntityAI::wants_to");
return plan.script.size() > 0 && plan.script[0].name == name;
dbc::check(plan.script.size() > 0, "empty action plan script");
return best_fit().name == name;
}
bool EntityAI::active() {
@ -190,4 +205,9 @@ namespace ai {
void EntityAI::update() {
plan = ai::plan(script, start, goal);
}
AIProfile* profile() {
return &AIMGR.profile;
}
}

@ -23,6 +23,7 @@ namespace ai {
EntityAI() {};
bool wants_to(std::string name);
ai::Action& best_fit();
bool active();
@ -58,6 +59,5 @@ namespace ai {
ActionPlan plan(std::string script_name, State start, State goal);
/* Mostly used for debugging and validation. */
AIProfile* profile();
void check_valid_action(std::string name, std::string msg);
}

@ -60,4 +60,5 @@ namespace ai {
void EntityAI::dump() {
dump_script(script, start, plan.script);
}
}

@ -2,6 +2,7 @@
#include "goap.hpp"
namespace ai {
AIProfile* profile();
void dump_only(State state, bool matching, bool show_as);
void dump_state(State state);
void dump_action(Action& action);

@ -120,6 +120,6 @@
"collect_items",
"use_healing"],
"Enemy::actions":
["find_enemy", "kill_enemy", "run_away", "use_healing"]
["find_enemy", "run_away", "kill_enemy", "use_healing"]
}
}

@ -47,7 +47,7 @@
"foreground": [205, 164, 246],
"background": [30, 20, 75]
},
{"_type": "Combat", "hp": 20, "max_hp": 20, "damage": 20, "dead": false},
{"_type": "Combat", "hp": 200, "max_hp": 200, "damage": 20, "dead": false},
{"_type": "Motion", "dx": 0, "dy": 0, "random": false},
{"_type": "EnemyConfig", "ai_script": "Enemy::actions", "ai_start_name": "Enemy::initial_state", "ai_goal_name": "Enemy::final_state"},
{"_type": "Personality", "hearing_distance": 5, "tough": false},

@ -40,8 +40,9 @@ namespace ai {
}
bool Action::can_effect(State& state) {
return ((state & $positive_preconds) == $positive_preconds) &&
((state & $negative_preconds) == ALL_ZERO);
bool posbit_match = (state & $positive_preconds) == $positive_preconds;
bool negbit_match = (state & $negative_preconds) == ALL_ZERO;
return posbit_match && negbit_match;
}
State Action::apply_effect(State& state) {
@ -113,11 +114,11 @@ namespace ai {
ActionState find_lowest(std::unordered_map<ActionState, int>& open_set) {
check(!open_set.empty(), "open set can't be empty in find_lowest");
int found_score = SCORE_MAX;
int found_score = std::numeric_limits<int>::max();
ActionState found_as;
for(auto& kv : open_set) {
if(kv.second < found_score) {
if(kv.second <= found_score) {
found_score = kv.second;
found_as = kv.first;
}
@ -166,7 +167,7 @@ namespace ai {
g_score.insert_or_assign(neighbor, tentative_g_score);
ActionState neighbor_as{neighbor_action, neighbor};
int score = tentative_g_score + h(neighbor, goal) + neighbor_action.cost;
int score = tentative_g_score + h(neighbor, goal);
// this maybe doesn't need score
open_set.insert_or_assign(neighbor_as, score);

@ -205,6 +205,7 @@ TEST_CASE("Confirm EntityAI behaves as expected", "[ai]") {
enemy.set_state("in_combat", true);
enemy.set_state("health_good", false);
enemy.update();
enemy.dump();
auto& best = enemy.best_fit();
REQUIRE(best.name == "run_away");
REQUIRE(enemy.wants_to("run_away"));
}

@ -7,7 +7,7 @@
using namespace combat;
TEST_CASE("cause scared rat won't run away bug", "[combat]") {
TEST_CASE("cause scared rat won't run away bug", "[combat-fail]") {
ai::reset();
ai::init("assets/ai.json");
@ -18,20 +18,9 @@ TEST_CASE("cause scared rat won't run away bug", "[combat]") {
DinkyECS::Entity rat_id = 1;
ai::EntityAI rat("Enemy::actions", ai_start, ai_goal);
rat.set_state("tough_personality", false);
rat.set_state("health_good", true);
battle.add_enemy(rat_id, rat);
// first confirm that everyone stops fightings
bool active = battle.plan();
rat.dump();
REQUIRE(active);
REQUIRE(rat.wants_to("kill_enemy"));
// this causes the plan to read END but if you set
// health_good to false it will run_away
rat.set_state("health_good", false);
active = battle.plan();
battle.add_enemy(rat_id, rat);
battle.plan();
rat.dump();
REQUIRE(rat.wants_to("run_away"));
}

@ -27,10 +27,10 @@ TEST_CASE("RitualEngine basic tests", "[rituals]") {
fmt::println("\n\n------------ TEST WILL DO MAGICK TOO");
ritual.dump();
REQUIRE(ritual.will_do("magick_type"));
REQUIRE(ritual.will_do("pierce_type"));
ritual.pop();
REQUIRE(ritual.will_do("pierce_type"));
REQUIRE(ritual.will_do("magick_type"));
re.reset(ritual);
re.set_state(ritual, "has_magick", true);

Loading…
Cancel
Save