@ -40,8 +40,9 @@ namespace ai {
}
bool Action : : can_effect ( State & state ) {
return ( ( state & $ positive_preconds ) = = $ positive_preconds ) & &
( ( state & $ negative_preconds ) = = ALL_ZERO ) ;
bool posbit_match = ( state & $ positive_preconds ) = = $ positive_preconds ;
bool negbit_match = ( state & $ negative_preconds ) = = ALL_ZERO ;
return posbit_match & & negbit_match ;
}
State Action : : apply_effect ( State & state ) {
@ -113,11 +114,11 @@ namespace ai {
ActionState find_lowest ( std : : unordered_map < ActionState , int > & open_set ) {
check ( ! open_set . empty ( ) , " open set can't be empty in find_lowest " ) ;
int found_score = SCORE_MAX ;
int found_score = std : : numeric_limits < int > : : max ( ) ;
ActionState found_as ;
for ( auto & kv : open_set ) {
if ( kv . second < found_score ) {
if ( kv . second < = found_score ) {
found_score = kv . second ;
found_as = kv . first ;
}
@ -166,7 +167,7 @@ namespace ai {
g_score . insert_or_assign ( neighbor , tentative_g_score ) ;
ActionState neighbor_as { neighbor_action , neighbor } ;
int score = tentative_g_score + h ( neighbor , goal ) + neighbor_action . cost ;
int score = tentative_g_score + h ( neighbor , goal ) ;
// this maybe doesn't need score
open_set . insert_or_assign ( neighbor_as , score ) ;