Move amt's examples into scratchpad for later review.

master
Zed A. Shaw 1 day ago
parent 9c02fb846b
commit a4a4389281
  1. 93
      scratchpad/amt/main.cpp
  2. 197
      scratchpad/amt/matrix.hpp
  3. 746
      scratchpad/amt/pixel.hpp
  4. 417
      scratchpad/amt/raycaster.cpp
  5. 73
      scratchpad/amt/raycaster.hpp
  6. 34
      scratchpad/amt/texture.cpp
  7. 34
      scratchpad/amt/texture.hpp
  8. 253
      scratchpad/amt/thread.hpp

@ -0,0 +1,93 @@
#include "amt/raycaster.hpp"
#include <iostream>
#include <chrono>
#include <numeric>
#include <functional>
#include "constants.hpp"
#include "stats.hpp"
Matrix MAP{
{1,1,1,1,1,1,1,1,1},
{1,0,2,0,0,0,0,0,1},
{1,0,4,0,0,5,2,0,1},
{1,0,0,0,0,0,0,0,1},
{1,1,0,0,0,0,0,1,1},
{1,0,0,1,3,4,0,0,1},
{1,0,0,0,0,0,1,1,1},
{1,0,0,0,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1}
};
void draw_gui(sf::RenderWindow &window, sf::Text &text, Stats &stats) {
sf::RectangleShape rect({SCREEN_WIDTH - RAY_VIEW_WIDTH, SCREEN_HEIGHT});
rect.setPosition({0,0});
rect.setFillColor({50, 50, 50});
window.draw(rect);
text.setString(
fmt::format("FPS\nmean:{:>8.5}\nsdev: {:>8.5}\nmin: {:>8.5}\nmax: {:>8.5}\ncount:{:<10}\n\nVSync? {}\nDebug? {}\n\nHit R to reset.",
stats.mean(), stats.stddev(), stats.min, stats.max, stats.n, VSYNC, DEBUG_BUILD));
window.draw(text);
}
int main() {
sf::RenderWindow window(sf::VideoMode({SCREEN_WIDTH, SCREEN_HEIGHT}), "Zed's Ray Caster Game Thing");
sf::Font font{"./assets/text.otf"};
sf::Text text{font};
text.setFillColor({255,255,255});
text.setPosition({10,10});
//ZED this should set with a function
float player_x = MAP.rows() / 2;
float player_y = MAP.cols() / 2;
Raycaster rayview(window, MAP, RAY_VIEW_WIDTH, RAY_VIEW_HEIGHT);
rayview.set_position(RAY_VIEW_X, RAY_VIEW_Y);
rayview.position_camera(player_x, player_y);
double moveSpeed = 0.1;
double rotSpeed = 0.1;
const auto onClose = [&window](const sf::Event::Closed&)
{
window.close();
};
Stats stats;
// NOTE: Enable this to lock frames at 60
window.setFramerateLimit(60);
while(window.isOpen()) {
auto start = std::chrono::high_resolution_clock::now();
rayview.render();
auto end = std::chrono::high_resolution_clock::now();
auto elapsed = std::chrono::duration<double>(end - start);
stats.sample(1/elapsed.count());
draw_gui(window, text, stats);
window.display();
if(sf::Keyboard::isKeyPressed(sf::Keyboard::Key::W)) {
rayview.run(moveSpeed, 1);
} else if(sf::Keyboard::isKeyPressed(sf::Keyboard::Key::S)) {
rayview.run(moveSpeed, -1);
}
if(sf::Keyboard::isKeyPressed(sf::Keyboard::Key::D)) {
rayview.rotate(rotSpeed, -1);
} else if(sf::Keyboard::isKeyPressed(sf::Keyboard::Key::A)) {
rayview.rotate(rotSpeed, 1);
}
if(sf::Keyboard::isKeyPressed(sf::Keyboard::Key::R)) {
stats.reset();
}
window.handleEvents(onClose);
}
return 0;
}

@ -0,0 +1,197 @@
#pragma once
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <type_traits>
#include <algorithm>
namespace amt {
namespace detail {
[[nodiscard]] constexpr auto cal_index(
std::size_t r,
std::size_t c,
[[maybe_unused]] std::size_t rs,
[[maybe_unused]] std::size_t cs
) -> std::size_t {
return r * cs + c;
}
}
template <typename T>
struct Matrix {
using value_type = T;
using pointer = value_type*;
using const_pointer = value_type const*;
using reference = value_type&;
using const_reference = value_type const&;
using iterator = pointer;
using const_iterator = const_pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using difference_type = std::ptrdiff_t;
using size_type = std::size_t;
template <bool IsConst>
struct View {
using base_type = std::conditional_t<IsConst, const_pointer, pointer>;
base_type data;
size_type r;
size_type rows;
size_type cols;
constexpr reference operator[](size_type c) noexcept requires (!IsConst) {
assert(c < cols && "Out of bound access");
auto const index = detail::cal_index(r, c, rows, cols);
return data[index];
}
constexpr const_reference operator[](size_type c) const noexcept {
assert(c < cols && "Out of bound access");
auto const index = detail::cal_index(r, c, rows, cols);
return data[index];
}
};
constexpr Matrix() noexcept = default;
Matrix(Matrix const& other)
: Matrix(other.rows(), other.cols())
{
std::copy(other.begin(), other.end(), begin());
}
Matrix& operator=(Matrix const& other) {
if (this == &other) return *this;
auto temp = Matrix(other);
swap(temp, *this);
return *this;
}
constexpr Matrix(Matrix && other) noexcept
: m_data(other.m_data)
, m_row(other.m_row)
, m_col(other.m_col)
{
other.m_data = nullptr;
}
constexpr Matrix& operator=(Matrix && other) noexcept {
if (this == &other) return *this;
swap(*this, other);
return *this;
}
~Matrix() {
if (m_data) delete[] m_data;
}
Matrix(size_type row, size_type col)
: m_data(new value_type[row * col])
, m_row(row)
, m_col(col)
{}
Matrix(size_type row, size_type col, value_type def)
: Matrix(row, col)
{
std::fill(begin(), end(), def);
}
Matrix(std::initializer_list<std::initializer_list<value_type>> li)
: m_row(li.size())
{
for (auto const& row: li) {
m_col = std::max(m_col, row.size());
}
auto const size = m_row * m_col;
if (size == 0) return;
m_data = new value_type[size];
std::fill_n(m_data, size, 0);
for (auto r = 0ul; auto const& row: li) {
for (auto c = 0ul; auto const& col: row) {
this->operator()(r, c++) = col;
}
++r;
}
}
constexpr bool empty() const noexcept { return size() == 0; }
constexpr size_type size() const noexcept { return rows() * cols(); }
constexpr size_type rows() const noexcept { return m_row; }
constexpr size_type cols() const noexcept { return m_col; }
constexpr auto data() noexcept -> pointer { return m_data; }
constexpr auto data() const noexcept -> const_pointer { return m_data; }
constexpr iterator begin() noexcept { return m_data; }
constexpr iterator end() noexcept { return m_data + size(); }
constexpr const_iterator begin() const noexcept { return m_data; }
constexpr const_iterator end() const noexcept { return m_data + size(); }
constexpr reverse_iterator rbegin() noexcept { return std::reverse_iterator(end()); }
constexpr reverse_iterator rend() noexcept { return std::reverse_iterator(begin()); }
constexpr const_reverse_iterator rbegin() const noexcept { return std::reverse_iterator(end()); }
constexpr const_reverse_iterator rend() const noexcept { return std::reverse_iterator(begin()); }
constexpr auto operator()(size_type r, size_type c) noexcept -> reference {
auto const index = detail::cal_index(r, c, rows(), cols());
assert(index < size() && "Out of bound access");
return m_data[index];
}
constexpr auto operator()(size_type r, size_type c) const noexcept -> const_reference {
auto const index = detail::cal_index(r, c, rows(), cols());
assert(index < size() && "Out of bound access");
return m_data[index];
}
constexpr auto operator[](size_type r) noexcept -> View<false> {
assert(r < rows() && "Out of bound access");
return { .data = m_data, .r = r, .rows = m_row, .cols = m_col };
}
constexpr auto operator[](size_type r) const noexcept -> View<true> {
assert(r < rows() && "Out of bound access");
return { .data = m_data, .r = r, .rows = m_row, .cols = m_col };
}
friend void swap(Matrix& lhs, Matrix& rhs) noexcept {
using std::swap;
swap(lhs.m_data, rhs.m_data);
swap(lhs.m_row, rhs.m_row);
swap(lhs.m_col, rhs.m_col);
}
private:
pointer m_data{};
size_type m_row{};
size_type m_col{};
};
} // namespace amt
#if 0
#include <format>
namespace std {
template <typename T>
struct formatter<amt::Matrix<T>> {
constexpr auto parse(format_parse_context& ctx) {
return ctx.begin();
}
auto format(amt::Matrix<T> const& m, auto& ctx) const {
std::string s = "[\n";
for (auto r = std::size_t{}; r < m.rows(); ++r) {
for (auto c = std::size_t{}; c < m.cols(); ++c) {
s += std::format("{}, ", m(r, c));
}
s += '\n';
}
s += "]";
return format_to(ctx.out(), "{}", s);
}
};
} // namespace std
#endif

@ -0,0 +1,746 @@
#ifndef AMT_PIXEL_HPP
#define AMT_PIXEL_HPP
#include "matrix.hpp"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <string>
#include <stdexcept>
#include <type_traits>
namespace amt {
enum class PixelFormat {
rgba,
abgr,
rgb ,
bgr ,
ga , // gray scale and alpha
ag , // alpha and gray scale
g // gray scale
};
inline static constexpr auto get_pixel_format_from_channel(std::size_t c, bool little_endian = false) -> PixelFormat {
switch (c) {
case 1: return PixelFormat::g;
case 2: return little_endian ? PixelFormat::ag : PixelFormat::ga;
case 3: return little_endian ? PixelFormat::bgr : PixelFormat::rgb;
case 4: return little_endian ? PixelFormat::abgr : PixelFormat::abgr;
}
throw std::runtime_error(std::string("get_pixel_format_from_channel: unknown channel ") + std::to_string(c));
}
namespace detail {
static constexpr auto compare_float(float l, float r) noexcept -> bool {
return std::abs(l - r) < std::numeric_limits<float>::epsilon();
}
} // namespace detail
enum class BlendMode {
normal,
multiply,
screen,
overlay,
darken,
lighten,
colorDodge,
colorBurn,
hardLight,
softLight,
difference,
exclusion
};
struct RGBA {
using pixel_t = std::uint8_t;
using pixels_t = std::uint32_t;
constexpr RGBA() noexcept = default;
constexpr RGBA(RGBA const&) noexcept = default;
constexpr RGBA(RGBA &&) noexcept = default;
constexpr RGBA& operator=(RGBA const&) noexcept = default;
constexpr RGBA& operator=(RGBA &&) noexcept = default;
constexpr ~RGBA() noexcept = default;
// NOTE: Accepts RRGGBBAA
explicit constexpr RGBA(pixels_t color) noexcept
: RGBA((color >> (8 * 3)) & 0xff, (color >> (8 * 2)) & 0xff, (color >> (8 * 1)) & 0xff, (color >> (8 * 0)) & 0xff)
{}
constexpr RGBA(pixel_t r, pixel_t g, pixel_t b, pixel_t a = 0xff) noexcept
: m_data {r, g, b, a}
{}
constexpr RGBA(pixel_t color, pixel_t a = 0xff) noexcept
: RGBA(color, color, color, a)
{}
// NOTE: Returns RRGGBBAA
constexpr auto to_hex() const noexcept -> pixels_t {
auto r = static_cast<pixels_t>(this->r());
auto b = static_cast<pixels_t>(this->b());
auto g = static_cast<pixels_t>(this->g());
auto a = static_cast<pixels_t>(this->a());
return (r << (8 * 3)) | (g << (8 * 2)) | (b << (8 * 1)) | (a << (8 * 0));
}
constexpr auto r() const noexcept -> pixel_t { return m_data[0]; }
constexpr auto g() const noexcept -> pixel_t { return m_data[1]; }
constexpr auto b() const noexcept -> pixel_t { return m_data[2]; }
constexpr auto a() const noexcept -> pixel_t { return m_data[3]; }
constexpr auto r() noexcept -> pixel_t& { return m_data[0]; }
constexpr auto g() noexcept -> pixel_t& { return m_data[1]; }
constexpr auto b() noexcept -> pixel_t& { return m_data[2]; }
constexpr auto a() noexcept -> pixel_t& { return m_data[3]; }
/**
* @returns the value is between 0 and 1
*/
constexpr auto brightness() const noexcept -> float {
// 0.299*R + 0.587*G + 0.114*B
auto tr = normalize(r());
auto tg = normalize(g());
auto tb = normalize(b());
return (0.299 * tr + 0.587 * tg + 0.114 * tb);
}
template <typename T>
requires std::is_arithmetic_v<T>
constexpr auto operator/(T val) const noexcept {
auto d = static_cast<float>(val);
return RGBA(
static_cast<pixel_t>(r() / d),
static_cast<pixel_t>(g() / d),
static_cast<pixel_t>(b() / d),
a()
);
}
template <typename T>
requires std::is_arithmetic_v<T>
constexpr auto operator*(T val) const noexcept {
auto d = static_cast<float>(val);
return RGBA(
static_cast<pixel_t>(r() * d),
static_cast<pixel_t>(g() * d),
static_cast<pixel_t>(b() * d),
a()
);
}
private:
static constexpr auto normalize(pixel_t p) noexcept -> float {
return float(p) / 255;
}
static constexpr auto to_pixel(float p) noexcept -> pixel_t {
return static_cast<pixel_t>(p * 255);
}
template <BlendMode M>
static constexpr auto blend_helper() noexcept {
constexpr auto mix_helper = [](float s, float b, float a) -> float {
// (1 - αb) x Cs + αb x B(Cb, Cs)
return (1 - a) * s + a * b;
};
if constexpr (M == BlendMode::normal) {
return [mix_helper](float bg, float fg, float alpha) { return mix_helper(bg, fg, alpha); };
} else if constexpr (M == BlendMode::multiply) {
return [mix_helper](float bg, float fg, float alpha) { return mix_helper(bg, bg * fg, alpha); };
} else if constexpr (M == BlendMode::screen) {
return [mix_helper](float bg, float fg, float alpha) {
// Cb + Cs -(Cb x Cs)
auto bf = bg + fg - (bg * fg);
return mix_helper(bg, bf, alpha);
};
} else if constexpr (M == BlendMode::overlay) {
return [mix_helper](float bg, float fg, float alpha, auto&& hard_light_fn, auto&& multiply_fn, auto&& screen_fn) {
// HardLight(Cs, Cb)
auto hl = hard_light_fn(bg, fg, alpha, multiply_fn, screen_fn);
return mix_helper(bg, hl, alpha);
};
} else if constexpr (M == BlendMode::darken) {
return [mix_helper](float bg, float fg, float alpha) {
return mix_helper(bg, std::min(bg, fg), alpha);
};
} else if constexpr (M == BlendMode::lighten) {
return [mix_helper](float bg, float fg, float alpha) {
return mix_helper(bg, std::max(bg, fg), alpha);
};
} else if constexpr (M == BlendMode::colorDodge) {
return [mix_helper](float bg, float fg, float alpha) {
constexpr auto fn = [](float b, float s) -> float {
if (b == 0) return 0;
if (s == 255) return 255;
return std::min(1.f, b / (1.f - s));
};
auto bf = fn(bg, fg);
return mix_helper(bg, bf, alpha);
};
} else if constexpr (M == BlendMode::colorBurn) {
return [mix_helper](float bg, float fg, float alpha) {
constexpr auto fn = [](float b, float s) -> float {
if (b == 255) return 255;
if (s == 0) return 0;
return 1.f - std::min(1.f, (1.f - b) / s);
};
auto bf = fn(bg, fg);
return mix_helper(bg, bf, alpha);
};
} else if constexpr (M == BlendMode::hardLight) {
return [mix_helper](float bg, float fg, float alpha, auto&& multiply_fn, auto&& screen_fn) {
auto fn = [&multiply_fn, &screen_fn](float b, float s, float a) -> float {
if (s <= 0.5f) {
return multiply_fn(b, 2.f * s, a);
} else {
return screen_fn(b, 2.f * s - 1.f, a);
}
};
auto bf = fn(bg, fg, alpha);
return mix_helper(bg, bf, alpha);
};
} else if constexpr (M == BlendMode::softLight) {
return [mix_helper](float bg, float fg, float alpha) {
constexpr auto fn = [](float b, float s) -> float {
if (s <= 0.5f) {
// B(Cb, Cs) = Cb - (1 - 2 x Cs) x Cb x (1 - Cb)
return b - (1.f - 2.f * s) * b * (1 - b);
} else {
float d{};
if (b <= 0.5f) {
// D(Cb) = ((16 * Cb - 12) x Cb + 4) x Cb
d = ((16 * b - 12) * b + 4) * b;
} else {
// D(Cb) = sqrt(Cb)
d = std::sqrt(b);
}
// B(Cb, Cs) = Cb + (2 x Cs - 1) x (D(Cb) - Cb)
return b + (2 * s - 1) * (d - b);
}
};
auto bf = fn(bg, fg);
return mix_helper(bg, bf, alpha);
};
} else if constexpr (M == BlendMode::difference) {
return [mix_helper](float bg, float fg, float alpha) {
// B(Cb, Cs) = | Cb - Cs |
return mix_helper(bg, (bg > fg ? (bg - fg) : (fg - bg)), alpha);
};
} else if constexpr (M == BlendMode::exclusion) {
return [mix_helper](float bg, float fg, float alpha) {
constexpr auto fn = [](float b, float s) -> float {
// B(Cb, Cs) = Cb + Cs - 2 x Cb x Cs
return b + s - 2 * b * s;
};
auto bf = fn(bg, fg);
return mix_helper(bg, bf, alpha);
};
}
};
public:
template <BlendMode M>
constexpr auto blend(RGBA color) const noexcept -> RGBA {
auto ab = normalize(a());
auto as = normalize(color.a());
// αs x 1 + αb x (1 – αs)
auto alpha = to_pixel(as + ab * (1 - as));
auto lr = normalize(r());
auto lg = normalize(g());
auto lb = normalize(b());
auto rr = normalize(color.r());
auto rg = normalize(color.g());
auto rb = normalize(color.b());
auto nr = 0.f;
auto ng = 0.f;
auto nb = 0.f;
if constexpr (M == BlendMode::normal) {
auto fn = blend_helper<BlendMode::normal>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
} else if constexpr (M == BlendMode::multiply) {
auto fn = blend_helper<BlendMode::multiply>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
} else if constexpr (M == BlendMode::screen) {
auto fn = blend_helper<BlendMode::screen>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
} else if constexpr (M == BlendMode::overlay) {
auto fn = blend_helper<BlendMode::overlay>();
auto hard_light_fn = blend_helper<BlendMode::hardLight>();
auto multiply_fn = blend_helper<BlendMode::multiply>();
auto screen_fn = blend_helper<BlendMode::screen>();
nr = fn(lr, rr, ab, hard_light_fn, multiply_fn, screen_fn);
ng = fn(lg, rg, ab, hard_light_fn, multiply_fn, screen_fn);
nb = fn(lb, rb, ab, hard_light_fn, multiply_fn, screen_fn);
} else if constexpr (M == BlendMode::darken) {
auto fn = blend_helper<BlendMode::darken>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
} else if constexpr (M == BlendMode::lighten) {
auto fn = blend_helper<BlendMode::lighten>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
} else if constexpr (M == BlendMode::colorDodge) {
auto fn = blend_helper<BlendMode::colorDodge>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
} else if constexpr (M == BlendMode::colorBurn) {
auto fn = blend_helper<BlendMode::colorDodge>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
} else if constexpr (M == BlendMode::hardLight) {
auto fn = blend_helper<BlendMode::hardLight>();
auto multiply_fn = blend_helper<BlendMode::multiply>();
auto screen_fn = blend_helper<BlendMode::screen>();
nr = fn(lr, rr, ab, multiply_fn, screen_fn);
ng = fn(lg, rg, ab, multiply_fn, screen_fn);
nb = fn(lb, rb, ab, multiply_fn, screen_fn);
} else if constexpr (M == BlendMode::softLight) {
auto fn = blend_helper<BlendMode::softLight>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
} else if constexpr (M == BlendMode::difference) {
auto fn = blend_helper<BlendMode::difference>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
} else if constexpr (M == BlendMode::exclusion) {
auto fn = blend_helper<BlendMode::exclusion>();
nr = fn(lr, rr, ab);
ng = fn(lg, rg, ab);
nb = fn(lb, rb, ab);
}
return RGBA(
to_pixel(nr),
to_pixel(ng),
to_pixel(nb),
alpha
);
}
constexpr auto blend(RGBA color, BlendMode mode) const noexcept -> RGBA {
switch (mode) {
case BlendMode::normal: return blend<BlendMode::normal>(color);
case BlendMode::multiply: return blend<BlendMode::multiply>(color);
case BlendMode::screen: return blend<BlendMode::screen>(color);
case BlendMode::overlay: return blend<BlendMode::overlay>(color);
case BlendMode::darken: return blend<BlendMode::darken>(color);
case BlendMode::lighten: return blend<BlendMode::lighten>(color);
case BlendMode::colorDodge: return blend<BlendMode::colorDodge>(color);
case BlendMode::colorBurn: return blend<BlendMode::colorBurn>(color);
case BlendMode::hardLight: return blend<BlendMode::hardLight>(color);
case BlendMode::softLight: return blend<BlendMode::softLight>(color);
case BlendMode::difference: return blend<BlendMode::difference>(color);
case BlendMode::exclusion: return blend<BlendMode::exclusion>(color);
}
}
private:
pixel_t m_data[4]{};
};
struct HSLA {
using pixel_t = float;
using pixels_t = float[4];
// ensures pixel to be in range
template <unsigned min, unsigned max>
struct PixelWrapper {
pixel_t& p;
constexpr PixelWrapper& operator=(float val) noexcept {
p = std::clamp(val, float(min), float(max));
}
constexpr operator pixel_t() const noexcept { return p; }
};
constexpr HSLA() noexcept = default;
constexpr HSLA(HSLA const&) noexcept = default;
constexpr HSLA(HSLA &&) noexcept = default;
constexpr HSLA& operator=(HSLA const&) noexcept = default;
constexpr HSLA& operator=(HSLA &&) noexcept = default;
constexpr ~HSLA() noexcept = default;
constexpr HSLA(pixel_t h, pixel_t s, pixel_t l, pixel_t a = 100) noexcept
: m_data({ .hsla = { .h = h, .s = s, .l = l, .a = a } })
{}
constexpr HSLA(RGBA color) noexcept {
auto min = std::min({color.r(), color.g(), color.b()});
auto max = std::max({color.r(), color.g(), color.b()});
auto c = (max - min) / 255.f;
auto tr = float(color.r()) / 255;
auto tg = float(color.g()) / 255;
auto tb = float(color.b()) / 255;
auto ta = float(color.a()) / 255;
float hue = 0;
float s = 0;
auto l = ((max + min) / 2.f) / 255.f;
if (min == max) {
if (max == color.r()) {
auto seg = (tg - tb) / c;
auto shift = (seg < 0 ? 360.f : 0.f) / 60.f;
hue = seg + shift;
} else if (max == color.g()) {
auto seg = (tb - tr) / c;
auto shift = 120.f / 60.f;
hue = seg + shift;
} else {
auto seg = (tr - tg) / c;
auto shift = 240.f / 60.f;
hue = seg + shift;
}
s = c / (1 - std::abs(2 * l - 1));
}
hue = hue * 60.f + 360.f;
auto q = static_cast<float>(static_cast<int>(hue / 360.f));
hue -= q * 360.f;
m_data.hsla.h = hue;
m_data.hsla.s = s * 100.f;
m_data.hsla.l = l * 100.f;
m_data.hsla.a = ta * 100.f;
}
constexpr operator RGBA() const noexcept {
auto ts = s() / 100.f;
auto tl = l() / 100.f;
auto ta = a() / 100.f;
if (s() == 0) return RGBA(to_pixel(tl), to_pixel(ta));
auto th = h() / 360.f;
float const q = tl < 0.5 ? tl * (1 + ts) : tl + ts - tl * ts;
float const p = 2 * tl - q;
return RGBA(
to_pixel(convert_hue(p, q, th + 1.f / 3)),
to_pixel(convert_hue(p, q, th)),
to_pixel(convert_hue(p, q, th - 1.f / 3)),
to_pixel(ta)
);
}
constexpr auto blend(HSLA color, BlendMode mode) const noexcept -> HSLA {
auto lhs = RGBA(*this);
auto rhs = RGBA(color);
return HSLA(lhs.blend(rhs, mode));
}
constexpr auto h() const noexcept -> pixel_t { return m_data.hsla.h; }
constexpr auto s() const noexcept -> pixel_t { return m_data.hsla.s; }
constexpr auto l() const noexcept -> pixel_t { return m_data.hsla.l; }
constexpr auto a() const noexcept -> pixel_t { return m_data.hsla.a; }
constexpr auto h() noexcept -> PixelWrapper<0, 360> { return { m_data.hsla.h }; }
constexpr auto s() noexcept -> PixelWrapper<0, 100> { return { m_data.hsla.s }; }
constexpr auto l() noexcept -> PixelWrapper<0, 100> { return { m_data.hsla.l }; }
constexpr auto a() noexcept -> PixelWrapper<0, 100> { return { m_data.hsla.a }; }
private:
static constexpr auto to_pixel(float a) noexcept -> RGBA::pixel_t {
return static_cast<RGBA::pixel_t>(a * 255);
}
static constexpr auto convert_hue(float p, float q, float t) noexcept -> float {
t = t - (t > 1) + (t < 0);
if (t * 6 < 1) return p + (q - p) * 6 * t;
if (t * 2 < 1) return q;
if (t * 3 < 2) return p + (q - p) * (2.f / 3 - t) * 6;
return p;
}
private:
union {
struct {
pixel_t h{}; // hue: 0-360
pixel_t s{}; // saturation: 0-100%
pixel_t l{}; // lightness: 0-100%
pixel_t a{}; // alpha: 0-100%
} hsla;
pixels_t color;
} m_data{};
};
namespace detail {
template <PixelFormat F>
inline static constexpr auto parse_pixel_helper(RGBA color, std::uint8_t* out_ptr) noexcept {
if constexpr (F == PixelFormat::rgba) {
out_ptr[0] = color.r();
out_ptr[1] = color.g();
out_ptr[2] = color.b();
out_ptr[3] = color.a();
} else if constexpr (F == PixelFormat::abgr) {
out_ptr[0] = color.a();
out_ptr[1] = color.b();
out_ptr[2] = color.g();
out_ptr[3] = color.r();
} else if constexpr (F == PixelFormat::rgb) {
out_ptr[0] = color.r();
out_ptr[1] = color.g();
out_ptr[2] = color.b();
} else if constexpr (F == PixelFormat::bgr) {
out_ptr[0] = color.b();
out_ptr[1] = color.g();
out_ptr[2] = color.r();
} else if constexpr (F == PixelFormat::ga) {
out_ptr[0] = color.r();
out_ptr[1] = color.a();
} else if constexpr (F == PixelFormat::ag) {
out_ptr[0] = color.a();
out_ptr[1] = color.r();
} else {
out_ptr[0] = color.r();
}
}
template <PixelFormat F>
inline static constexpr auto parse_pixel_helper(std::uint8_t const* in_ptr) noexcept -> RGBA {
if constexpr (F == PixelFormat::rgba) {
return {
in_ptr[0],
in_ptr[1],
in_ptr[2],
in_ptr[3]
};
} else if constexpr (F == PixelFormat::abgr) {
return {
in_ptr[3],
in_ptr[2],
in_ptr[1],
in_ptr[0]
};
} else if constexpr (F == PixelFormat::rgb) {
return {
in_ptr[0],
in_ptr[1],
in_ptr[2],
0xff
};
} else if constexpr (F == PixelFormat::bgr) {
return {
in_ptr[2],
in_ptr[1],
in_ptr[0],
0xff
};
} else if constexpr (F == PixelFormat::ga) {
return {
in_ptr[0],
in_ptr[1],
};
} else if constexpr (F == PixelFormat::ag) {
return {
in_ptr[1],
in_ptr[0],
};
} else {
return { in_ptr[0], 0xff };
}
}
} // namespace detail
inline static constexpr auto get_pixel_format_channel(PixelFormat format) noexcept -> std::size_t {
switch (format) {
case PixelFormat::rgba: case PixelFormat::abgr: return 4u;
case PixelFormat::rgb: case PixelFormat::bgr: return 3u;
case PixelFormat::ga: case PixelFormat::ag: return 2u;
case PixelFormat::g: return 1u;
}
assert(false && "unreachable");
}
struct PixelBuf {
private:
public:
using value_type = RGBA;
using base_type = Matrix<value_type>;
using pointer = typename base_type::pointer;
using const_pointer = typename base_type::const_pointer;
using reference = typename base_type::reference;
using const_reference = typename base_type::const_reference;
using iterator = typename base_type::iterator;
using const_iterator = typename base_type::const_iterator;
using reverse_iterator = typename base_type::reverse_iterator;
using const_reverse_iterator = typename base_type::const_reverse_iterator;
using difference_type = typename base_type::difference_type;
using size_type = typename base_type::size_type;
PixelBuf(size_type r, size_type c)
: m_data(r, c)
{}
PixelBuf(size_type r, size_type c, RGBA color)
: m_data(r, c, color)
{}
PixelBuf(std::uint8_t const* in, size_type r, size_type c, PixelFormat format = PixelFormat::rgba)
: PixelBuf(r, c)
{
assert(in != nullptr);
switch (format) {
case PixelFormat::rgba: from_helper<PixelFormat::rgba>(in, data(), size()); break;
case PixelFormat::abgr: from_helper<PixelFormat::abgr>(in, data(), size()); break;
case PixelFormat::rgb: from_helper<PixelFormat::rgb >(in, data(), size()); break;
case PixelFormat::bgr: from_helper<PixelFormat::bgr >(in, data(), size()); break;
case PixelFormat::ga: from_helper<PixelFormat::ga >(in, data(), size()); break;
case PixelFormat::ag: from_helper<PixelFormat::ag >(in, data(), size()); break;
case PixelFormat::g: from_helper<PixelFormat::g >(in, data(), size()); break;
}
}
PixelBuf() noexcept = default;
PixelBuf(PixelBuf const&) = default;
PixelBuf(PixelBuf &&) noexcept = default;
PixelBuf& operator=(PixelBuf const&) = default;
PixelBuf& operator=(PixelBuf &&) noexcept = default;
~PixelBuf() = default;
constexpr auto size() const noexcept -> size_type { return m_data.size(); }
constexpr auto rows() const noexcept -> size_type { return m_data.rows(); }
constexpr auto cols() const noexcept -> size_type { return m_data.cols(); }
constexpr auto data() noexcept -> pointer { return m_data.data(); }
constexpr auto data() const noexcept -> const_pointer { return m_data.data(); }
auto to_raw_buf() noexcept -> std::uint8_t* { return reinterpret_cast<std::uint8_t*>(data()); }
auto to_raw_buf() const noexcept -> std::uint8_t const* { return reinterpret_cast<std::uint8_t const*>(data()); }
constexpr auto raw_buf_size() const noexcept { return size() * sizeof(RGBA); }
constexpr auto begin() noexcept -> iterator { return m_data.begin(); }
constexpr auto end() noexcept -> iterator { return m_data.end(); }
constexpr auto begin() const noexcept -> const_iterator { return m_data.begin(); }
constexpr auto end() const noexcept -> const_iterator { return m_data.end(); }
constexpr auto rbegin() noexcept -> reverse_iterator { return m_data.rbegin(); }
constexpr auto rend() noexcept -> reverse_iterator { return m_data.rend(); }
constexpr auto rbegin() const noexcept -> const_reverse_iterator { return m_data.rbegin(); }
constexpr auto rend() const noexcept -> const_reverse_iterator { return m_data.rend(); }
constexpr decltype(auto) operator[](size_type r) noexcept { return m_data[r]; }
constexpr decltype(auto) operator[](size_type r) const noexcept { return m_data[r]; }
constexpr auto operator()(size_type r, size_type c) noexcept -> reference { return m_data(r, c); }
constexpr auto operator()(size_type r, size_type c) const noexcept -> const_reference { return m_data(r, c); }
constexpr auto fill(RGBA color) noexcept -> void {
std::fill(begin(), end(), color);
}
constexpr auto copy_to(std::uint8_t* out, PixelFormat format = PixelFormat::rgba) const noexcept {
assert(out != nullptr);
switch (format) {
case PixelFormat::rgba: copy_to_helper<PixelFormat::rgba>(data(), out, size());return;
case PixelFormat::abgr: copy_to_helper<PixelFormat::abgr>(data(), out, size());return;
case PixelFormat::rgb: copy_to_helper<PixelFormat::rgb >(data(), out, size());return;
case PixelFormat::bgr: copy_to_helper<PixelFormat::bgr >(data(), out, size());return;
case PixelFormat::ga: copy_to_helper<PixelFormat::ga >(data(), out, size());return;
case PixelFormat::ag: copy_to_helper<PixelFormat::ag >(data(), out, size());return;
case PixelFormat::g: copy_to_helper<PixelFormat::g >(data(), out, size());return;
}
assert(false && "unreachable");
}
private:
template <PixelFormat F>
constexpr auto copy_to_helper(const_pointer in, std::uint8_t* out, size_type size) const noexcept -> void {
constexpr auto channels = get_pixel_format_channel(F);
for (auto i = size_type{}; i < size; ++i) {
detail::parse_pixel_helper<F>(in[i], out + i * channels);
}
}
template <PixelFormat F>
constexpr auto from_helper(std::uint8_t const* in, pointer out, size_type size) const noexcept -> void {
constexpr auto channels = get_pixel_format_channel(F);
for (auto i = size_type{}; i < size; ++i) {
out[i] = detail::parse_pixel_helper<F>(in + i * channels);
}
}
private:
base_type m_data;
};
} // namespace amt
#include <format>
namespace std {
template <>
struct formatter<amt::RGBA> {
constexpr auto parse(format_parse_context& ctx) {
return ctx.begin();
}
auto format(amt::RGBA const& color, auto& ctx) const {
return format_to(ctx.out(), "rgba({}, {}, {}, {})", color.r(), color.g(), color.b(), color.a());
}
};
template <>
struct formatter<amt::HSLA> {
constexpr auto parse(format_parse_context& ctx) {
return ctx.begin();
}
auto format(amt::HSLA const& color, auto& ctx) const {
return format_to(ctx.out(), "hsla({:.1f}deg, {:.1f}%, {:.1f}%, {:.1f}%)", color.h(), color.s(), color.l(), color.a());
}
};
template <>
struct formatter<amt::PixelBuf> {
bool hsla = false;
constexpr auto parse(format_parse_context& ctx) {
auto it = ctx.begin();
while (it != ctx.end() && *it != '}') {
if (*it == 'h') hsla = true;
++it;
}
return it;
}
auto format(amt::PixelBuf const& buf, auto& ctx) const {
std::string s = "[\n";
for (auto r = std::size_t{}; r < buf.rows(); ++r) {
for (auto c = std::size_t{}; c < buf.cols(); ++c) {
auto color = buf(r, c);
if (hsla) s += std::format("{}, ", amt::HSLA(color));
else s += std::format("{}, ", color);
}
s += '\n';
}
s += "]";
return format_to(ctx.out(), "{}", s);
}
};
} // namespace std
#endif // AMT_PIXEL_HPP

@ -0,0 +1,417 @@
#include "amt/raycaster.hpp"
#include "amt/texture.hpp"
#include "amt/pixel.hpp"
#include "constants.hpp"
#include "thread.hpp"
#define AMT_LIGHT
using namespace fmt;
#ifdef AMT_LIGHT
static constexpr auto room_brightness = 0.3f; // increse this to increase the room brightness. Higher value means brighter room.
inline static constexpr amt::RGBA dumb_lighting(amt::RGBA pixel, float distance, float distance_from_center) {
auto const dim_pixel = pixel * room_brightness;
if (distance_from_center >= 0) {
auto const min_brightness = 1.f / std::max(distance_from_center, 0.5f); // farther away from the center darker it gets
auto const max_brightness = 1.f; // brighness should not exceed 1
auto const pixel_brightness = std::max(min_brightness, std::min(max_brightness, distance));
auto const yellow_brightness = float(distance_from_center * 60);
amt::RGBA const yellow = amt::HSLA(40, 20, yellow_brightness);
auto temp = (pixel / pixel_brightness).blend<amt::BlendMode::softLight>(yellow);
return temp.brightness() < 0.1f ? dim_pixel : temp;
} else {
return dim_pixel;
}
}
#else
inline static constexpr amt::RGBA dumb_lighting(amt::RGBA pixel, double distance, double distance_from_center) {
(void)distance_from_center;
if(distance < 0.9) return pixel;
return pixel / distance;
}
#endif
Raycaster::Raycaster(sf::RenderWindow& window, Matrix &map, unsigned width, unsigned height) :
view_texture(sf::Vector2u{width, height}),
view_sprite(view_texture),
$width(static_cast<int>(width)),
$height(static_cast<int>(height)),
pixels(height, width),
$window(window),
$map(map),
spriteOrder(textures.NUM_SPRITES),
spriteDistance(textures.NUM_SPRITES),
ZBuffer(width),
$radius(std::min($height, $width) / 2),
$r_sq($radius * $radius)
{
$window.setVerticalSyncEnabled(VSYNC);
view_sprite.setPosition({0, 0});
textures.load_textures();
}
void Raycaster::set_position(int x, int y) {
view_sprite.setPosition({(float)x, (float)y});
}
void Raycaster::position_camera(float player_x, float player_y) {
// x and y start position
posX = player_x;
posY = player_y;
}
void Raycaster::draw_pixel_buffer() {
view_texture.update(pixels.to_raw_buf(), {(unsigned int)$width, (unsigned int)$height}, {0, 0});
$window.draw(view_sprite);
}
void Raycaster::clear() {
pixels.fill({});
$window.clear();
}
void Raycaster::sprite_casting() {
// sort sprites from far to close
for(int i = 0; i < textures.NUM_SPRITES; i++) {
auto& sprite = textures.get_sprite(i);
spriteOrder[i] = i;
// this is just the distance calculation
spriteDistance[i] = ((posX - sprite.x) *
(posX - sprite.x) +
(posY - sprite.y) *
(posY - sprite.y));
}
sort_sprites(spriteOrder, spriteDistance, textures.NUM_SPRITES);
/*for(int i = 0; i < textures.NUM_SPRITES; i++) {*/
// after sorting the sprites, do the projection
// Be careful about capturing stack variables.
amt::parallel_for<1>(pool, 0, textures.NUM_SPRITES, [this, textureWidth = textures.TEXTURE_WIDTH, textureHeight = textures.TEXTURE_HEIGHT](size_t i){
int sprite_index = spriteOrder[i];
Sprite& sprite_rec = textures.get_sprite(sprite_index);
auto& sprite_texture = textures.get_texture(sprite_rec.texture);
double spriteX = sprite_rec.x - posX;
double spriteY = sprite_rec.y - posY;
//transform sprite with the inverse camera matrix
// [ planeX dirX ] -1 [ dirY -dirX ]
// [ ] = 1/(planeX*dirY-dirX*planeY) * [ ]
// [ planeY dirY ] [ -planeY planeX ]
double invDet = 1.0 / (planeX * dirY - dirX * planeY); // required for correct matrix multiplication
double transformX = invDet * (dirY * spriteX - dirX * spriteY);
//this is actually the depth inside the screen, that what Z is in 3D, the distance of sprite to player, matching sqrt(spriteDistance[i])
double transformY = invDet * (-planeY * spriteX + planeX * spriteY);
int spriteScreenX = int(($width / 2) * (1 + transformX / transformY));
int vMoveScreen = int(sprite_rec.elevation * -1 / transformY);
// calculate the height of the sprite on screen
//using "transformY" instead of the real distance prevents fisheye
int spriteHeight = abs(int($height / transformY)) / sprite_rec.vDiv;
//calculate lowest and highest pixel to fill in current stripe
int drawStartY = -spriteHeight / 2 + $height / 2 + vMoveScreen;
if(drawStartY < 0) drawStartY = 0;
int drawEndY = spriteHeight / 2 + $height / 2 + vMoveScreen;
if(drawEndY >= $height) drawEndY = $height - 1;
// calculate width the the sprite
// same as height of sprite, given that it's square
int spriteWidth = abs(int($height / transformY)) / sprite_rec.uDiv;
int drawStartX = -spriteWidth / 2 + spriteScreenX;
if(drawStartX < 0) drawStartX = 0;
int drawEndX = spriteWidth / 2 + spriteScreenX;
if(drawEndX > $width) drawEndX = $width;
//loop through every vertical stripe of the sprite on screen
for(int stripe = drawStartX; stripe < drawEndX; stripe++) {
int texX = int(256 * (stripe - (-spriteWidth / 2 + spriteScreenX)) * textureWidth / spriteWidth) / 256;
// the conditions in the if are:
// 1) it's in front of the camera plane so you don't see things behind you
// 2) ZBuffer, with perpendicular distance
if (texX < 0) continue;
if(transformY > 0 && transformY < ZBuffer[stripe]) {
for(int y = drawStartY; y < drawEndY; y++) {
//256 and 128 factors to avoid floats
int d = (y - vMoveScreen) * 256 - $height * 128 + spriteHeight * 128;
int texY = ((d * textureHeight) / spriteHeight) / 256;
if ((size_t)texY >= sprite_texture.rows()) continue;
//get current color from the texture
auto color = sprite_texture[texY][texX];
// poor person's transparency, get current color from the texture
if (!(color.to_hex() & 0xffffff00)) continue;
auto dist = get_distance_from_center(stripe, y);
pixels[y][stripe] = dumb_lighting(color, d, dist);
}
}
}
});
}
float Raycaster::get_distance_from_center(int x, int y) const noexcept {
float cx = $width / 2;
float cy = $height / 2;
auto dx = cx - x;
auto dy = cy - y;
return ($r_sq - dx * dx - dy * dy) / $r_sq;
}
void Raycaster::cast_rays() {
// WALL CASTING
/*for(int x = 0; x < $width; x++) {*/
amt::parallel_for<32>(pool, 0, static_cast<std::size_t>($width), [this](size_t x){
double perpWallDist = 0;
// calculate ray position and direction
double cameraX = 2 * x / double($width) - 1; // x-coord in camera space
double rayDirX = dirX + planeX * cameraX;
double rayDirY = dirY + planeY * cameraX;
// which box of the map we're in
int mapX = int(posX);
int mapY = int(posY);
// length of ray from current pos to next x or y-side
double sideDistX;
double sideDistY;
// length of ray from one x or y-side to next x or y-side
double deltaDistX = std::abs(1.0 / rayDirX);
double deltaDistY = std::abs(1.0 / rayDirY);
int stepX = 0;
int stepY = 0;
int hit = 0;
int side = 0;
// calculate step and initial sideDist
if(rayDirX < 0) {
stepX = -1;
sideDistX = (posX - mapX) * deltaDistX;
} else {
stepX = 1;
sideDistX = (mapX + 1.0 - posX) * deltaDistX;
}
if(rayDirY < 0) {
stepY = -1;
sideDistY = (posY - mapY) * deltaDistY;
} else {
stepY = 1;
sideDistY = (mapY + 1.0 - posY) * deltaDistY;
}
// perform DDA
while(hit == 0) {
if(sideDistX < sideDistY) {
sideDistX += deltaDistX;
mapX += stepX;
side = 0;
} else {
sideDistY += deltaDistY;
mapY += stepY;
side = 1;
}
if($map[mapY][mapX] > 0) hit = 1;
}
if(side == 0) {
perpWallDist = (sideDistX - deltaDistX);
} else {
perpWallDist = (sideDistY - deltaDistY);
}
int lineHeight = int($height / perpWallDist);
int drawStart = -lineHeight / 2 + $height / 2 + PITCH;
if(drawStart < 0) drawStart = 0;
int drawEnd = lineHeight / 2 + $height / 2 + PITCH;
if(drawEnd >= $height) drawEnd = $height - 1;
auto &texture = textures.get_texture($map[mapY][mapX] - 1);
// calculate value of wallX
double wallX; // where exactly the wall was hit
if(side == 0) {
wallX = posY + perpWallDist * rayDirY;
} else {
wallX = posX + perpWallDist * rayDirX;
}
wallX -= floor((wallX));
// x coorindate on the texture
int texX = int(wallX * double(textures.TEXTURE_WIDTH));
if(side == 0 && rayDirX > 0) texX = textures.TEXTURE_WIDTH - texX - 1;
if(side == 1 && rayDirY < 0) texX = textures.TEXTURE_WIDTH - texX - 1;
// LODE: an integer-only bresenham or DDA like algorithm could make the texture coordinate stepping faster
// How much to increase the texture coordinate per screen pixel
double step = 1.0 * textures.TEXTURE_HEIGHT / lineHeight;
// Starting texture coordinate
double texPos = (drawStart - PITCH - $height / 2 + lineHeight / 2) * step;
for(int y = drawStart; y < drawEnd; y++) {
int texY = (int)texPos & (textures.TEXTURE_HEIGHT - 1);
texPos += step;
auto dist = get_distance_from_center(x, y);
auto color = dumb_lighting(texture[texY][texX], perpWallDist, dist);
pixels[y][x] = color;
}
// SET THE ZBUFFER FOR THE SPRITE CASTING
ZBuffer[x] = perpWallDist;
});
}
void Raycaster::draw_ceiling_floor() {
/*for(int y = $height / 2 + 1; y < $height; ++y) {*/
auto const h = static_cast<size_t>($height);
amt::parallel_for<32>(pool, h / 2, h, [this, $height=h](size_t y){
const size_t textureWidth = textures.TEXTURE_WIDTH;
const size_t textureHeight = textures.TEXTURE_HEIGHT;
// rayDir for leftmost ray (x=0) and rightmost (x = w)
float rayDirX0 = dirX - planeX;
float rayDirY0 = dirY - planeY;
float rayDirX1 = dirX + planeX;
float rayDirY1 = dirY + planeY;
// current y position compared to the horizon
int p = y - $height / 2;
// vertical position of the camera
// 0.5 will the camera at the center horizon. For a
// different value you need a separate loop for ceiling
// and floor since they're no longer symmetrical.
float posZ = 0.5 * $height;
// horizontal distance from the camera to the floor for the current row
// 0.5 is the z position exactly in the middle between floor and ceiling
// See NOTE in Lode's code for more.
float rowDistance = posZ / p;
// calculate the real world step vector we have to add for each x (parallel to camera plane)
// adding step by step avoids multiplications with a wight in the inner loop
float floorStepX = rowDistance * (rayDirX1 - rayDirX0) / $width;
float floorStepY = rowDistance * (rayDirY1 - rayDirY0) / $width;
// real world coordinates of the leftmost column.
// This will be updated as we step to the right
float floorX = posX + rowDistance * rayDirX0;
float floorY = posY + rowDistance * rayDirY0;
for(int x = 0; x < $width; ++x) {
// the cell coord is simply taken from the int parts of
// floorX and floorY.
int cellX = int(floorX);
int cellY = int(floorY);
// get the texture coordinat from the fractional part
int tx = int(textureWidth * (floorX - cellX)) & (textureWidth - 1);
int ty = int(textureWidth * (floorY - cellY)) & (textureHeight - 1);
floorX += floorStepX;
floorY += floorStepY;
// now get the pixel from the texture
// this uses the previous ty/tx fractional parts of
// floorX cellX to find the texture x/y. How?
#ifdef AMT_LIGHT
// FLOOR
auto dist_floor = get_distance_from_center(x, y);
pixels[y][x] = dumb_lighting(textures.floor[ty][tx], p, dist_floor);
// CEILING
auto dist_ceiling = get_distance_from_center(x, $height - y - 1);
pixels[$height - y - 1][x] = dumb_lighting(textures.ceiling[ty][tx], p, dist_ceiling);
#else
// FLOOR
pixels[y][x] = textures.floor[ty][tx];
// CEILING
pixels[$height - y - 1][x] = textures.ceiling[ty][tx];
#endif
}
});
}
void Raycaster::render() {
draw_ceiling_floor();
// This wait to prevent data-race
pool.wait(); // Try to remove this to see unbelievable performance
cast_rays();
pool.wait(); // Try to remove this too
sprite_casting();
pool.wait();
draw_pixel_buffer();
}
bool Raycaster::empty_space(int new_x, int new_y) {
dbc::check((size_t)new_x < $map.cols(),
format("x={} too wide={}", new_x, $map.cols()));
dbc::check((size_t)new_y < $map.rows(),
format("y={} too high={}", new_y, $map.rows()));
return $map[new_y][new_x] == 0;
}
void Raycaster::sort_sprites(std::vector<int>& order, std::vector<double>& dist, int amount)
{
std::vector<std::pair<double, int>> sprites(amount);
for(int i = 0; i < amount; i++) {
sprites[i].first = dist[i];
sprites[i].second = order[i];
}
std::sort(sprites.begin(), sprites.end());
// restore in reverse order
for(int i = 0; i < amount; i++) {
dist[i] = sprites[amount - i - 1].first;
order[i] = sprites[amount - i - 1].second;
}
}
void Raycaster::run(double speed, int dir) {
double speed_and_dir = speed * dir;
if(empty_space(int(posX + dirX * speed_and_dir), int(posY))) {
posX += dirX * speed_and_dir;
}
if(empty_space(int(posX), int(posY + dirY * speed_and_dir))) {
posY += dirY * speed_and_dir;
}
}
void Raycaster::rotate(double speed, int dir) {
double speed_and_dir = speed * dir;
double oldDirX = dirX;
dirX = dirX * cos(speed_and_dir) - dirY * sin(speed_and_dir);
dirY = oldDirX * sin(speed_and_dir) + dirY * cos(speed_and_dir);
double oldPlaneX = planeX;
planeX = planeX * cos(speed_and_dir) - planeY * sin(speed_and_dir);
planeY = oldPlaneX * sin(speed_and_dir) + planeY * cos(speed_and_dir);
}

@ -0,0 +1,73 @@
#pragma once
#include <fmt/core.h>
#include <SFML/Graphics.hpp>
#include <SFML/Graphics/Image.hpp>
#include <numbers>
#include <algorithm>
#include <cmath>
#include "matrix.hpp"
#include <cstdlib>
#include <array>
#include "dbc.hpp"
#include "amt/pixel.hpp"
#include "amt/texture.hpp"
#include <memory>
#include "thread.hpp"
using Matrix = amt::Matrix<int>;
struct Raycaster {
int PITCH=0;
TexturePack textures;
double posX = 0;
double posY = 0;
// initial direction vector
double dirX = -1;
double dirY = 0;
// the 2d raycaster version of camera plane
double planeX = 0;
double planeY = 0.66;
sf::Texture view_texture;
sf::Sprite view_sprite;
//ZED: USE smart pointer for this
int $width;
int $height;
amt::PixelBuf pixels;
sf::RenderWindow& $window;
Matrix& $map;
std::vector<int> spriteOrder;
std::vector<double> spriteDistance;
std::vector<double> ZBuffer; // width
float $radius; // std::min($height, $width) / 2;
float $r_sq; // = radius * radius;
amt::thread_pool_t pool;
Raycaster(sf::RenderWindow& window, Matrix &map, unsigned width, unsigned height);
void draw_pixel_buffer();
void clear();
void cast_rays();
void draw_ceiling_floor();
void sprite_casting();
void sort_sprites(std::vector<int>& order, std::vector<double>& dist, int amount);
void render();
bool empty_space(int new_x, int new_y);
void run(double speed, int dir);
void rotate(double speed, int dir);
void position_camera(float player_x, float player_y);
float get_distance_from_center(int x, int y) const noexcept;
void set_position(int x, int y);
inline size_t pixcoord(int x, int y) {
return ((y) * $width) + (x);
}
};

@ -0,0 +1,34 @@
#include <SFML/Graphics/Image.hpp>
#include "dbc.hpp"
#include <fmt/core.h>
#include "config.hpp"
#include "amt/texture.hpp"
Image TexturePack::load_image(std::string filename) {
sf::Image img;
bool good = img.loadFromFile(filename);
dbc::check(good, format("failed to load {}", filename));
return amt::PixelBuf(img.getPixelsPtr(), TEXTURE_HEIGHT, TEXTURE_WIDTH);
}
void TexturePack::load_textures() {
Config assets("assets/config.json");
for(string tile_path : assets["textures"]) {
images.emplace_back(load_image(tile_path));
}
for(string tile_path : assets["sprites"]) {
images.emplace_back(load_image(tile_path));
}
floor = load_image(assets["floor"]);
ceiling = load_image(assets["ceiling"]);
}
Image& TexturePack::get_texture(size_t num) {
return images[num];
}
Sprite &TexturePack::get_sprite(size_t sprite_num) {
return sprites[sprite_num];
}

@ -0,0 +1,34 @@
#pragma once
#include <cstdint>
#include <vector>
#include <string>
#include "amt/pixel.hpp"
struct Sprite {
double x;
double y;
int texture;
// ZED: this should be a separate transform parameter
double elevation=0;
int uDiv=1;
int vDiv=1;
};
using Image = amt::PixelBuf;
struct TexturePack {
int NUM_SPRITES=1;
static const int TEXTURE_WIDTH=256; // must be power of two
static const int TEXTURE_HEIGHT=256; // must be power of two
std::vector<amt::PixelBuf> images;
std::vector<Sprite> sprites{{4.0, 3.55, 6}};
Image floor;
Image ceiling;
void load_textures();
amt::PixelBuf load_image(std::string filename);
Sprite& get_sprite(size_t sprite_num);
Image& get_texture(size_t num);
};

@ -0,0 +1,253 @@
#ifndef AMT_THREAD_HPP
#define AMT_THREAD_HPP
#include <cassert>
#include <concepts>
#include <cstddef>
#include <deque>
#include <mutex>
#include <type_traits>
#include <thread>
#include <condition_variable>
#include <atomic>
#include <functional>
namespace amt {
// NOTE: Could implement lock-free queue.
template <typename T>
struct Queue {
using base_type = std::deque<T>;
using value_type = typename base_type::value_type;
using pointer = typename base_type::pointer;
using const_pointer = typename base_type::const_pointer;
using reference = typename base_type::reference;
using const_reference = typename base_type::const_reference;
using iterator = typename base_type::iterator;
using const_iterator = typename base_type::const_iterator;
using reverse_iterator = typename base_type::reverse_iterator;
using const_reverse_iterator = typename base_type::const_reverse_iterator;
using difference_type = typename base_type::difference_type;
using size_type = typename base_type::size_type;
constexpr Queue() noexcept = default;
constexpr Queue(Queue const&) noexcept = delete;
constexpr Queue(Queue &&) noexcept = default;
constexpr Queue& operator=(Queue const&) noexcept = delete;
constexpr Queue& operator=(Queue &&) noexcept = default;
constexpr ~Queue() noexcept = default;
template <typename U>
requires std::same_as<std::decay_t<U>, value_type>
void push(U&& u) {
std::lock_guard m(m_mutex);
m_data.push_back(std::forward<U>(u));
}
template <typename... Args>
void emplace(Args&&... args) {
std::lock_guard m(m_mutex);
m_data.emplace_back(std::forward<Args>(args)...);
}
std::optional<value_type> pop() {
std::lock_guard m(m_mutex);
if (empty_unsafe()) return std::nullopt;
auto el = std::move(m_data.front());
m_data.pop_front();
return std::move(el);
}
auto size() const noexcept -> size_type {
std::lock_guard m(m_mutex);
return m_data.size();
}
auto empty() const noexcept -> bool {
std::lock_guard m(m_mutex);
return m_data.empty();
}
constexpr auto size_unsafe() const noexcept -> size_type { return m_data.size(); }
constexpr auto empty_unsafe() const noexcept -> bool { return m_data.empty(); }
private:
base_type m_data;
mutable std::mutex m_mutex;
};
template <typename Fn>
struct ThreadPool;
template <typename Fn>
struct Worker {
using parent_t = ThreadPool<Fn>*;
using work_t = Fn;
using size_type = std::size_t;
constexpr Worker() noexcept = default;
constexpr Worker(Worker const&) noexcept = default;
constexpr Worker(Worker &&) noexcept = default;
constexpr Worker& operator=(Worker const&) noexcept = default;
constexpr Worker& operator=(Worker &&) noexcept = default;
~Worker() {
stop();
}
void start(parent_t pool, size_type id) {
assert((m_running.load(std::memory_order::acquire) == false) && "Thread is already running");
m_running.store(true);
m_parent.store(pool);
m_id = id;
m_thread = std::thread([this]() {
while (m_running.load(std::memory_order::relaxed)) {
std::unique_lock lk(m_mutex);
m_cv.wait(lk, [this] {
return !m_queue.empty_unsafe() || !m_running.load(std::memory_order::relaxed);
});
auto item = pop_task();
if (!item) {
item = try_steal();
if (!item) continue;
}
process_work(std::move(*item));
}
});
}
void process_work(work_t&& work) const noexcept {
std::invoke(std::move(work));
auto ptr = m_parent.load();
if (ptr) ptr->task_completed();
}
void stop() {
if (!m_running.load()) return;
{
std::lock_guard<std::mutex> lock(m_mutex);
m_running.store(false);
}
m_cv.notify_all();
m_thread.join();
m_parent.store(nullptr);
}
void add(work_t&& work) {
std::lock_guard<std::mutex> lock(m_mutex);
m_queue.push(std::move(work));
m_cv.notify_one();
}
std::optional<work_t> pop_task() noexcept {
return m_queue.pop();
}
std::optional<work_t> try_steal() noexcept {
auto ptr = m_parent.load();
if (ptr) return ptr->try_steal(m_id);
return {};
}
constexpr bool empty() const noexcept { return m_queue.empty_unsafe(); }
constexpr size_type size() const noexcept { return m_queue.size_unsafe(); }
constexpr size_type id() const noexcept { return m_id; }
constexpr bool running() const noexcept { return m_running.load(std::memory_order::relaxed); }
private:
Queue<work_t> m_queue{};
std::thread m_thread;
std::atomic<bool> m_running{false};
std::mutex m_mutex{};
std::condition_variable m_cv{};
std::atomic<parent_t> m_parent{nullptr};
size_type m_id;
};
template <typename Fn>
struct ThreadPool {
using worker_t = Worker<Fn>;
using work_t = typename worker_t::work_t;
using size_type = std::size_t;
constexpr ThreadPool(ThreadPool const&) noexcept = delete;
constexpr ThreadPool(ThreadPool &&) noexcept = default;
constexpr ThreadPool& operator=(ThreadPool const&) noexcept = delete;
constexpr ThreadPool& operator=(ThreadPool &&) noexcept = default;
~ThreadPool() {
stop();
}
ThreadPool(size_type n = std::thread::hardware_concurrency())
: m_workers(std::max(n, size_type{1}))
{
for (auto i = 0ul; i < m_workers.size(); ++i) {
m_workers[i].start(this, i);
}
}
void stop() {
for (auto& w: m_workers) w.stop();
}
void add(Fn&& work) {
m_active_tasks.fetch_add(1, std::memory_order::relaxed);
m_workers[m_last_added].add(std::move(work));
m_last_added = (m_last_added + 1) % m_workers.size();
}
std::optional<work_t> try_steal(size_type id) {
for (auto& w: m_workers) {
if (w.id() == id) continue;
auto item = w.pop_task();
if (item) return item;
}
return {};
}
void task_completed() {
if (m_active_tasks.fetch_sub(1, std::memory_order::release) == 1) {
m_wait_cv.notify_all();
}
}
void wait() {
std::unique_lock lock(m_wait_mutex);
m_wait_cv.wait(lock, [this] {
return m_active_tasks.load(std::memory_order::acquire) == 0;
});
}
private:
std::vector<worker_t> m_workers;
size_type m_last_added{};
std::mutex m_wait_mutex;
std::condition_variable m_wait_cv;
std::atomic<size_t> m_active_tasks{0};
};
using thread_pool_t = ThreadPool<std::function<void()>>;
// WARNING: Do not capture the stack variable if you're defering wait on pool.
// If you want to capture them, either capture them value or do "pool.wait()" at the end of the scope.
template <std::size_t Split, typename Fn>
requires (std::is_invocable_v<Fn, std::size_t>)
constexpr auto parallel_for(thread_pool_t& pool, std::size_t start, std::size_t end, Fn&& body) noexcept {
if (start >= end) return;
auto const size = (end - start);
auto const chunk_size = std::max(size_t{1}, (size + Split - 1) / Split);
auto const num_chunks = (size + chunk_size - 1) / chunk_size;
for (auto chunk = 0ul; chunk < num_chunks; ++chunk) {
auto const chunk_start = std::min(start + (chunk * chunk_size), end);
auto const chunk_end = std::min(chunk_start + (chunk_size), end);
pool.add([chunk_start, chunk_end, body] {
for (auto i = chunk_start; i < chunk_end; ++i) {
std::invoke(body, i);
}
});
}
}
} // nsmespace amt
#endif // AMT_THREAD_HPP
Loading…
Cancel
Save