Quick renaming of stuff to be more generic as 'AI'. Now maybe I can get some sweet sweet investor money.

master
Zed A. Shaw 3 weeks ago
parent 9d6dc2f5dd
commit a079f882df
  1. 2
      Makefile
  2. 30
      ai.cpp
  3. 76
      ai.hpp
  4. 76
      goap.hpp
  5. 4
      meson.build
  6. 194
      tests/goap.cpp
  7. 2
      tests/pathing.cpp

@ -22,7 +22,7 @@ tracy_build:
meson compile -j 10 -C builddir meson compile -j 10 -C builddir
test: build test: build
./builddir/runtests "[goap]" ./builddir/runtests "[ai]"
run: build test run: build test
powershell "cp ./builddir/zedcaster.exe ." powershell "cp ./builddir/zedcaster.exe ."

@ -1,11 +1,11 @@
#include "dbc.hpp" #include "dbc.hpp"
#include "goap.hpp" #include "ai.hpp"
namespace ailol { namespace ai {
using namespace nlohmann; using namespace nlohmann;
bool is_subset(GOAPState& source, GOAPState& target) { bool is_subset(State& source, State& target) {
GOAPState result = source & target; State result = source & target;
return result == target; return result == target;
} }
@ -55,22 +55,22 @@ namespace ailol {
} }
} }
bool Action::can_effect(GOAPState& state) { bool Action::can_effect(State& state) {
return ((state & $positive_preconds) == $positive_preconds) && return ((state & $positive_preconds) == $positive_preconds) &&
((state & $negative_preconds) == ALL_ZERO); ((state & $negative_preconds) == ALL_ZERO);
} }
GOAPState Action::apply_effect(GOAPState& state) { State Action::apply_effect(State& state) {
return (state | $positive_effects) & ~$negative_effects; return (state | $positive_effects) & ~$negative_effects;
} }
int distance_to_goal(GOAPState& from, GOAPState& to) { int distance_to_goal(State& from, State& to) {
auto result = from ^ to; auto result = from ^ to;
return result.count(); return result.count();
} }
AStarPath reconstruct_path(std::unordered_map<Action, Action>& came_from, Action& current) { Script reconstruct_path(std::unordered_map<Action, Action>& came_from, Action& current) {
AStarPath total_path{current}; Script total_path{current};
int count = 0; int count = 0;
while(came_from.contains(current) && count++ < 10) { while(came_from.contains(current) && count++ < 10) {
@ -83,11 +83,11 @@ namespace ailol {
return total_path; return total_path;
} }
inline int h(GOAPState& start, GOAPState& goal) { inline int h(State& start, State& goal) {
return distance_to_goal(start, goal); return distance_to_goal(start, goal);
} }
inline int d(GOAPState& start, GOAPState& goal) { inline int d(State& start, State& goal) {
return distance_to_goal(start, goal); return distance_to_goal(start, goal);
} }
@ -106,10 +106,10 @@ namespace ailol {
return *result; return *result;
} }
std::optional<AStarPath> plan_actions(std::vector<Action>& actions, GOAPState& start, GOAPState& goal) { std::optional<Script> plan_actions(std::vector<Action>& actions, State& start, State& goal) {
std::unordered_map<ActionState, int> open_set; std::unordered_map<ActionState, int> open_set;
std::unordered_map<Action, Action> came_from; std::unordered_map<Action, Action> came_from;
std::unordered_map<GOAPState, int> g_score; std::unordered_map<State, int> g_score;
ActionState start_state{FINAL_ACTION, start}; ActionState start_state{FINAL_ACTION, start};
@ -120,13 +120,13 @@ namespace ailol {
auto current = find_lowest(open_set); auto current = find_lowest(open_set);
if(is_subset(current.state, goal)) { if(is_subset(current.state, goal)) {
return std::make_optional<AStarPath>(reconstruct_path(came_from, current.action)); return std::make_optional<Script>(reconstruct_path(came_from, current.action));
} }
open_set.erase(current); open_set.erase(current);
for(auto& neighbor_action : actions) { for(auto& neighbor_action : actions) {
// calculate the GOAPState being current/neighbor // calculate the State being current/neighbor
if(!neighbor_action.can_effect(current.state)) { if(!neighbor_action.can_effect(current.state)) {
continue; continue;
} }

@ -0,0 +1,76 @@
#pragma once
#include <vector>
#include "matrix.hpp"
#include <bitset>
#include <limits>
#include <optional>
#include <nlohmann/json.hpp>
namespace ai {
constexpr const int SCORE_MAX = std::numeric_limits<int>::max();
constexpr const size_t STATE_MAX = 32;
using State = std::bitset<STATE_MAX>;
const State ALL_ZERO;
const State ALL_ONES = ~ALL_ZERO;
struct Action {
std::string $name;
int $cost = 0;
State $positive_preconds;
State $negative_preconds;
State $positive_effects;
State $negative_effects;
Action(std::string name, int cost) :
$name(name), $cost(cost) { }
void needs(int name, bool val);
void effect(int name, bool val);
void load(nlohmann::json &profile, nlohmann::json& config);
bool can_effect(State& state);
State apply_effect(State& state);
bool operator==(const Action& other) const {
return other.$name == $name;
}
};
using Script = std::deque<Action>;
const Action FINAL_ACTION("END", SCORE_MAX);
struct ActionState {
Action action;
State state;
ActionState(Action action, State state) :
action(action), state(state) {}
bool operator==(const ActionState& other) const {
return other.action == action && other.state == state;
}
};
bool is_subset(State& source, State& target);
int distance_to_goal(State& from, State& to);
std::optional<Script> plan_actions(std::vector<Action>& actions, State& start, State& goal);
}
template<> struct std::hash<ai::Action> {
size_t operator()(const ai::Action& p) const {
return std::hash<std::string>{}(p.$name);
}
};
template<> struct std::hash<ai::ActionState> {
size_t operator()(const ai::ActionState& p) const {
return std::hash<ai::Action>{}(p.action) ^ std::hash<ai::State>{}(p.state);
}
};

@ -1,76 +0,0 @@
#pragma once
#include <vector>
#include "matrix.hpp"
#include <bitset>
#include <limits>
#include <optional>
#include <nlohmann/json.hpp>
namespace ailol {
constexpr const int SCORE_MAX = std::numeric_limits<int>::max();
constexpr const size_t STATE_MAX = 32;
using GOAPState = std::bitset<STATE_MAX>;
const GOAPState ALL_ZERO;
const GOAPState ALL_ONES = ~ALL_ZERO;
struct Action {
std::string $name;
int $cost = 0;
GOAPState $positive_preconds;
GOAPState $negative_preconds;
GOAPState $positive_effects;
GOAPState $negative_effects;
Action(std::string name, int cost) :
$name(name), $cost(cost) { }
void needs(int name, bool val);
void effect(int name, bool val);
void load(nlohmann::json &profile, nlohmann::json& config);
bool can_effect(GOAPState& state);
GOAPState apply_effect(GOAPState& state);
bool operator==(const Action& other) const {
return other.$name == $name;
}
};
using AStarPath = std::deque<Action>;
const Action FINAL_ACTION("END", SCORE_MAX);
struct ActionState {
Action action;
GOAPState state;
ActionState(Action action, GOAPState state) :
action(action), state(state) {}
bool operator==(const ActionState& other) const {
return other.action == action && other.state == state;
}
};
bool is_subset(GOAPState& source, GOAPState& target);
int distance_to_goal(GOAPState& from, GOAPState& to);
std::optional<AStarPath> plan_actions(std::vector<Action>& actions, GOAPState& start, GOAPState& goal);
}
template<> struct std::hash<ailol::Action> {
size_t operator()(const ailol::Action& p) const {
return std::hash<std::string>{}(p.$name);
}
};
template<> struct std::hash<ailol::ActionState> {
size_t operator()(const ailol::ActionState& p) const {
return std::hash<ailol::Action>{}(p.action) ^ std::hash<ailol::GOAPState>{}(p.state);
}
};

@ -93,7 +93,7 @@ sources = [
'config.cpp', 'config.cpp',
'dbc.cpp', 'dbc.cpp',
'devices.cpp', 'devices.cpp',
'goap.cpp', 'ai.cpp',
'guecs.cpp', 'guecs.cpp',
'gui_fsm.cpp', 'gui_fsm.cpp',
'inventory.cpp', 'inventory.cpp',
@ -131,7 +131,7 @@ executable('runtests', sources + [
'tests/dbc.cpp', 'tests/dbc.cpp',
'tests/dinkyecs.cpp', 'tests/dinkyecs.cpp',
'tests/fsm.cpp', 'tests/fsm.cpp',
'tests/goap.cpp', 'tests/ai.cpp',
'tests/guecs.cpp', 'tests/guecs.cpp',
'tests/inventory.cpp', 'tests/inventory.cpp',
'tests/lel.cpp', 'tests/lel.cpp',

@ -1,194 +0,0 @@
#include <catch2/catch_test_macros.hpp>
#include "dbc.hpp"
#include "goap.hpp"
#include <iostream>
using namespace dbc;
using namespace ailol;
using namespace nlohmann;
TEST_CASE("worldstate works", "[goap]") {
enum StateNames {
ENEMY_IN_RANGE,
ENEMY_DEAD
};
GOAPState goal;
GOAPState start;
std::vector<Action> actions;
// start off enemy not dead and not in range
start[ENEMY_DEAD] = false;
start[ENEMY_IN_RANGE] = false;
// end goal is enemy is dead
goal[ENEMY_DEAD] = true;
Action move_closer("move_closer", 10);
move_closer.needs(ENEMY_IN_RANGE, false);
move_closer.effect(ENEMY_IN_RANGE, true);
REQUIRE(move_closer.can_effect(start));
auto after_move_state = move_closer.apply_effect(start);
REQUIRE(start[ENEMY_IN_RANGE] == false);
REQUIRE(after_move_state[ENEMY_IN_RANGE] == true);
REQUIRE(after_move_state[ENEMY_DEAD] == false);
// start is clean but after move is dirty
REQUIRE(move_closer.can_effect(start));
REQUIRE(!move_closer.can_effect(after_move_state));
REQUIRE(distance_to_goal(start, after_move_state) == 1);
Action kill_it("kill_it", 10);
kill_it.needs(ENEMY_IN_RANGE, true);
kill_it.needs(ENEMY_DEAD, false);
kill_it.effect(ENEMY_DEAD, true);
REQUIRE(!kill_it.can_effect(start));
REQUIRE(kill_it.can_effect(after_move_state));
auto after_kill_state = kill_it.apply_effect(after_move_state);
REQUIRE(!kill_it.can_effect(after_kill_state));
REQUIRE(distance_to_goal(after_move_state, after_kill_state) == 1);
actions.push_back(kill_it);
actions.push_back(move_closer);
REQUIRE(start != goal);
}
TEST_CASE("basic feature tests", "[goap]") {
enum StateNames {
ENEMY_IN_RANGE,
ENEMY_DEAD
};
GOAPState goal;
GOAPState start;
std::vector<Action> actions;
// start off enemy not dead and not in range
start[ENEMY_DEAD] = false;
start[ENEMY_IN_RANGE] = false;
// end goal is enemy is dead
goal[ENEMY_DEAD] = true;
Action move_closer("move_closer", 10);
move_closer.needs(ENEMY_IN_RANGE, false);
move_closer.effect(ENEMY_IN_RANGE, true);
Action kill_it("kill_it", 10);
kill_it.needs(ENEMY_IN_RANGE, true);
// this is duplicated on purpose to confirm that setting
// a positive then a negative properly cancels out
kill_it.needs(ENEMY_DEAD, true);
kill_it.needs(ENEMY_DEAD, false);
// same thing with effects
kill_it.effect(ENEMY_DEAD, false);
kill_it.effect(ENEMY_DEAD, true);
// order seems to matter which is wrong
actions.push_back(kill_it);
actions.push_back(move_closer);
auto result = plan_actions(actions, start, goal);
REQUIRE(result != std::nullopt);
auto state = start;
for(auto& action : *result) {
state = action.apply_effect(state);
}
REQUIRE(state[ENEMY_DEAD]);
}
TEST_CASE("wargame test from cppGOAP", "[goap]") {
std::vector<Action> actions;
auto profile = R"({
"target_acquired": 0,
"target_lost": 1,
"target_in_warhead_range": 2,
"target_dead": 3
})"_json;
// Now establish all the possible actions for the action pool
// In this example we're providing the AI some different FPS actions
Action spiral("searchSpiral", 5);
auto config = R"({
"needs": {
"target_acquired": false,
"target_lost": true
},
"effects": {
"target_acquired": true
}
})"_json;
spiral.load(profile, config);
actions.push_back(spiral);
Action serpentine("searchSerpentine", 5);
config = R"({
"needs": {
"target_acquired": false,
"target_lost": false
},
"effects": {
"target_acquired": true
}
})"_json;
serpentine.load(profile, config);
actions.push_back(serpentine);
Action intercept("interceptTarget", 5);
config = R"({
"needs": {
"target_acquired": true,
"target_dead": false
},
"effects": {
"target_in_warhead_range": true
}
})"_json;
intercept.load(profile, config);
actions.push_back(intercept);
Action detonateNearTarget("detonateNearTarget", 5);
config = R"({
"needs": {
"target_in_warhead_range": true,
"target_acquired": true,
"target_dead": false
},
"effects": {
"target_dead": true
}
})"_json;
detonateNearTarget.load(profile, config);
actions.push_back(detonateNearTarget);
// Here's the initial state...
GOAPState initial_state;
initial_state[profile["target_acquired"]] = false;
initial_state[profile["target_lost"]] = true;
initial_state[profile["target_in_warhead_range"]] = false;
initial_state[profile["target_dead"]] = false;
// ...and the goal state
GOAPState goal_target_dead;
goal_target_dead[profile["target_dead"]] = true;
auto result = plan_actions(actions, initial_state, goal_target_dead);
REQUIRE(result != std::nullopt);
auto state = initial_state;
for(auto& action : *result) {
fmt::println("ACTION: {}", action.$name);
state = action.apply_effect(state);
}
REQUIRE(state[profile["target_dead"]]);
}

@ -4,7 +4,7 @@
#include <fstream> #include <fstream>
#include "pathing.hpp" #include "pathing.hpp"
#include "matrix.hpp" #include "matrix.hpp"
#include "goap.hpp" #include "ai.hpp"
using namespace fmt; using namespace fmt;
using namespace nlohmann; using namespace nlohmann;

Loading…
Cancel
Save