GUECS: Minimal components from zedcaster that will let me make a GUI for a game.

master
Zed A. Shaw 3 days ago
parent 10ecf50bc0
commit 1be770d62d
  1. 9
      Makefile
  2. 15
      color.hpp
  3. 35
      config.cpp
  4. 19
      config.hpp
  5. 28
      constants.hpp
  6. 35
      dbc.cpp
  7. 35
      dbc.hpp
  8. 214
      dinkyecs.hpp
  9. 7
      events.hpp
  10. 310
      guecs.cpp
  11. 235
      guecs.hpp
  12. 117
      lel.cpp
  13. 57
      lel.hpp
  14. 263
      lel_parser.cpp
  15. 68
      lel_parser.rl
  16. 31
      matrix.cpp
  17. 49
      matrix.hpp
  18. 17
      meson.build
  19. 20
      point.hpp
  20. 6
      rand.cpp
  21. 28
      rand.hpp
  22. 77
      shaders.cpp
  23. 28
      shaders.hpp
  24. 607
      shiterator.hpp
  25. 82
      sound.cpp
  26. 26
      sound.hpp
  27. 99
      textures.cpp
  28. 39
      textures.hpp

@ -6,7 +6,10 @@ reset:
patch: patch:
powershell "cp ./patches/process.h ./subprojects/libgit2-1.9.0/src/util/process.h" powershell "cp ./patches/process.h ./subprojects/libgit2-1.9.0/src/util/process.h"
build: %.cpp : %.rl
ragel -o $@ $<
build: lel_parser.cpp
meson compile -C builddir meson compile -C builddir
config: config:
@ -19,10 +22,10 @@ test: build
install: build test install: build test
powershell "cp ./builddir/subprojects/libgit2-1.9.0/liblibgit2package.dll ." powershell "cp ./builddir/subprojects/libgit2-1.9.0/liblibgit2package.dll ."
powershell "cp ./builddir/subprojects/efsw/libefsw.dll ." powershell "cp ./builddir/subprojects/efsw/libefsw.dll ."
powershell "cp builddir/escape_turings_tarpit.exe ." powershell "cp builddir/ttpit.exe ."
run: install run: install
./escape_turings_tarpit.exe ./ttpit.exe
clean: clean:
meson compile --clean -C builddir meson compile --clean -C builddir

@ -0,0 +1,15 @@
#pragma once
#include <SFML/Graphics/Color.hpp>
namespace ColorValue {
const sf::Color BLACK{0, 0, 0};
const sf::Color DARK_DARK{10, 10, 10};
const sf::Color DARK_MID{30, 30, 30};
const sf::Color DARK_LIGHT{60, 60, 60};
const sf::Color MID{100, 100, 100};
const sf::Color LIGHT_DARK{150, 150, 150};
const sf::Color LIGHT_MID{200, 200, 200};
const sf::Color LIGHT_LIGHT{230, 230, 230};
const sf::Color WHITE{255, 255, 255};
const sf::Color TRANSPARENT = sf::Color::Transparent;
}

@ -0,0 +1,35 @@
#include "config.hpp"
#include "dbc.hpp"
#include <fmt/core.h>
using nlohmann::json;
using fmt::format;
Config::Config(const std::string src_path) : $src_path(src_path) {
std::ifstream infile($src_path);
$config = json::parse(infile);
}
json &Config::operator[](const std::string &key) {
dbc::check($config.contains(key), fmt::format("ERROR in config, key {} doesn't exist.", key));
return $config[key];
}
std::wstring Config::wstring(const std::string main_key, const std::string sub_key) {
dbc::check($config.contains(main_key), fmt::format("ERROR wstring main/key in config, main_key {} doesn't exist.", main_key));
dbc::check($config[main_key].contains(sub_key), fmt::format("ERROR wstring in config, main_key/key {}/{} doesn't exist.", main_key, sub_key));
const std::string& str_val = $config[main_key][sub_key];
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> $converter;
return $converter.from_bytes(str_val);
}
std::vector<std::string> Config::keys() {
std::vector<std::string> the_fucking_keys;
for(auto& [key, value] : $config.items()) {
the_fucking_keys.push_back(key);
}
return the_fucking_keys;
}

@ -0,0 +1,19 @@
#pragma once
#include <nlohmann/json.hpp>
#include <fstream>
#include <codecvt>
struct Config {
nlohmann::json $config;
std::string $src_path;
Config(const std::string src_path);
Config(nlohmann::json config, std::string src_path)
: $config(config), $src_path(src_path) {}
nlohmann::json &operator[](const std::string &key);
nlohmann::json &json() { return $config; };
std::wstring wstring(const std::string main_key, const std::string sub_key);
std::vector<std::string> keys();
};

@ -0,0 +1,28 @@
#pragma once
#include <string>
#include "color.hpp"
#include <array>
constexpr const int TEXTURE_WIDTH=256;
constexpr const int TEXTURE_HEIGHT=256;
constexpr const int SCREEN_WIDTH=1280;
constexpr const int SCREEN_HEIGHT=720;
constexpr const bool VSYNC=false;
constexpr const int FRAME_LIMIT=60;
constexpr const int GUECS_PADDING = 3;
constexpr const int GUECS_BORDER_PX = 1;
constexpr const int GUECS_FONT_SIZE = 30;
const sf::Color GUECS_FILL_COLOR = ColorValue::DARK_MID;
const sf::Color GUECS_TEXT_COLOR = ColorValue::LIGHT_LIGHT;
const sf::Color GUECS_BG_COLOR = ColorValue::MID;
const sf::Color GUECS_BORDER_COLOR = ColorValue::MID;
constexpr const char *FONT_FILE_NAME="assets/text.otf";
#ifdef NDEBUG
constexpr const bool DEBUG_BUILD=false;
#else
constexpr const bool DEBUG_BUILD=true;
#endif

@ -1,40 +1,47 @@
#include "dbc.hpp" #include "dbc.hpp"
#include <iostream>
void dbc::log(const string &message) { void dbc::log(const string &message, const std::source_location location) {
fmt::print("{}\n", message); std::cout << '[' << location.file_name() << ':'
<< location.line() << "|"
<< location.function_name() << "] "
<< message << std::endl;
} }
void dbc::sentinel(const string &message) { void dbc::sentinel(const string &message, const std::source_location location) {
string err = fmt::format("[SENTINEL!] {}\n", message); string err = fmt::format("[SENTINEL!] {}", message);
dbc::log(err, location);
throw dbc::SentinelError{err}; throw dbc::SentinelError{err};
} }
void dbc::pre(const string &message, bool test) { void dbc::pre(const string &message, bool test, const std::source_location location) {
if(!test) { if(!test) {
string err = fmt::format("[PRE!] {}\n", message); string err = fmt::format("[PRE!] {}", message);
dbc::log(err, location);
throw dbc::PreCondError{err}; throw dbc::PreCondError{err};
} }
} }
void dbc::pre(const string &message, std::function<bool()> tester) { void dbc::pre(const string &message, std::function<bool()> tester, const std::source_location location) {
dbc::pre(message, tester()); dbc::pre(message, tester(), location);
} }
void dbc::post(const string &message, bool test) { void dbc::post(const string &message, bool test, const std::source_location location) {
if(!test) { if(!test) {
string err = fmt::format("[POST!] {}\n", message); string err = fmt::format("[POST!] {}", message);
dbc::log(err, location);
throw dbc::PostCondError{err}; throw dbc::PostCondError{err};
} }
} }
void dbc::post(const string &message, std::function<bool()> tester) { void dbc::post(const string &message, std::function<bool()> tester, const std::source_location location) {
dbc::post(message, tester()); dbc::post(message, tester(), location);
} }
void dbc::check(bool test, const string &message) { void dbc::check(bool test, const string &message, const std::source_location location) {
if(!test) { if(!test) {
string err = fmt::format("[CHECK!] {}\n", message); string err = fmt::format("[CHECK!] {}\n", message);
fmt::println("{}", err); dbc::log(err, location);
throw dbc::CheckError{err}; throw dbc::CheckError{err};
} }
} }

@ -3,6 +3,7 @@
#include <string> #include <string>
#include <fmt/core.h> #include <fmt/core.h>
#include <functional> #include <functional>
#include <source_location>
using std::string; using std::string;
@ -19,11 +20,31 @@ namespace dbc {
class PreCondError : public Error {}; class PreCondError : public Error {};
class PostCondError : public Error {}; class PostCondError : public Error {};
void log(const string &message); void log(const string &message,
void sentinel(const string &message); const std::source_location location =
void pre(const string &message, bool test); std::source_location::current());
void pre(const string &message, std::function<bool()> tester);
void post(const string &message, bool test); [[noreturn]] void sentinel(const string &message,
void post(const string &message, std::function<bool()> tester); const std::source_location location =
void check(bool test, const string &message); std::source_location::current());
void pre(const string &message, bool test,
const std::source_location location =
std::source_location::current());
void pre(const string &message, std::function<bool()> tester,
const std::source_location location =
std::source_location::current());
void post(const string &message, bool test,
const std::source_location location =
std::source_location::current());
void post(const string &message, std::function<bool()> tester,
const std::source_location location =
std::source_location::current());
void check(bool test, const string &message,
const std::source_location location =
std::source_location::current());
} }

@ -0,0 +1,214 @@
#pragma once
#include "dbc.hpp"
#include <any>
#include <functional>
#include <queue>
#include <tuple>
#include <typeindex>
#include <typeinfo>
#include <unordered_map>
#include <optional>
namespace DinkyECS
{
typedef unsigned long Entity;
using EntityMap = std::unordered_map<Entity, size_t>;
template <typename T>
struct ComponentStorage {
std::vector<T> data;
std::queue<size_t> free_indices;
};
struct Event {
int event = 0;
Entity entity = 0;
std::any data;
};
typedef std::queue<Event> EventQueue;
struct World {
unsigned long entity_count = 0;
std::unordered_map<std::type_index, EntityMap> $components;
std::unordered_map<std::type_index, std::any> $facts;
std::unordered_map<std::type_index, EventQueue> $events;
std::unordered_map<std::type_index, std::any> $component_storages;
std::vector<Entity> $constants;
Entity entity() { return ++entity_count; }
void clone_into(DinkyECS::World &to_world) {
to_world.$constants = $constants;
to_world.$facts = $facts;
to_world.entity_count = entity_count;
to_world.$component_storages = $component_storages;
for(auto eid : $constants) {
for(const auto &[tid, eid_map] : $components) {
auto &their_map = to_world.$components[tid];
if(eid_map.contains(eid)) {
their_map.insert_or_assign(eid, eid_map.at(eid));
}
}
}
}
void make_constant(DinkyECS::Entity entity) {
$constants.push_back(entity);
}
template <typename Comp>
size_t make_component() {
auto &storage = component_storage_for<Comp>();
size_t index;
if(!storage.free_indices.empty()) {
index = storage.free_indices.front();
storage.free_indices.pop();
} else {
storage.data.emplace_back();
index = storage.data.size() - 1;
}
return index;
}
template <typename Comp>
ComponentStorage<Comp> &component_storage_for() {
auto type_index = std::type_index(typeid(Comp));
$component_storages.try_emplace(type_index, ComponentStorage<Comp>{});
return std::any_cast<ComponentStorage<Comp> &>(
$component_storages.at(type_index));
}
template <typename Comp>
EntityMap &entity_map_for() {
return $components[std::type_index(typeid(Comp))];
}
template <typename Comp>
EventQueue &queue_map_for() {
return $events[std::type_index(typeid(Comp))];
}
template <typename Comp>
void remove(Entity ent) {
EntityMap &map = entity_map_for<Comp>();
if(map.contains(ent)) {
size_t index = map.at(ent);
component_storage_for<Comp>().free_indices.push(index);
}
map.erase(ent);
}
template <typename Comp>
void set_the(Comp val) {
$facts.insert_or_assign(std::type_index(typeid(Comp)), val);
}
template <typename Comp>
Comp &get_the() {
auto comp_id = std::type_index(typeid(Comp));
dbc::check($facts.contains(comp_id),
fmt::format("!!!! ATTEMPT to access world fact that hasn't "
"been set yet: {}",
typeid(Comp).name()));
// use .at to get std::out_of_range if fact not set
std::any &res = $facts.at(comp_id);
return std::any_cast<Comp &>(res);
}
template <typename Comp>
bool has_the() {
auto comp_id = std::type_index(typeid(Comp));
return $facts.contains(comp_id);
}
template <typename Comp>
void set(Entity ent, Comp val) {
EntityMap &map = entity_map_for<Comp>();
if(has<Comp>(ent)) {
get<Comp>(ent) = val;
return;
}
map.insert_or_assign(ent, make_component<Comp>());
get<Comp>(ent) = val;
}
template <typename Comp>
Comp &get(Entity ent) {
EntityMap &map = entity_map_for<Comp>();
auto &storage = component_storage_for<Comp>();
auto index = map.at(ent);
return storage.data[index];
}
template <typename Comp>
bool has(Entity ent) {
EntityMap &map = entity_map_for<Comp>();
return map.contains(ent);
}
template <typename Comp>
void query(std::function<void(Entity, Comp &)> cb) {
EntityMap &map = entity_map_for<Comp>();
for(auto &[entity, index] : map) {
cb(entity, get<Comp>(entity));
}
}
template <typename CompA, typename CompB>
void query(std::function<void(Entity, CompA &, CompB &)> cb) {
EntityMap &map_a = entity_map_for<CompA>();
EntityMap &map_b = entity_map_for<CompB>();
for(auto &[entity, index_a] : map_a) {
if(map_b.contains(entity)) {
cb(entity, get<CompA>(entity), get<CompB>(entity));
}
}
}
template <typename Comp>
void send(Comp event, Entity entity, std::any data) {
EventQueue &queue = queue_map_for<Comp>();
queue.push({event, entity, data});
}
template <typename Comp>
Event recv() {
EventQueue &queue = queue_map_for<Comp>();
Event evt = queue.front();
queue.pop();
return evt;
}
template <typename Comp>
bool has_event() {
EventQueue &queue = queue_map_for<Comp>();
return !queue.empty();
}
/* std::optional can't do references. Don't try it!
* Actually, this sucks, either delete it or have it
* return pointers (assuming optional can handle pointers)
*/
template <typename Comp>
std::optional<Comp> get_if(DinkyECS::Entity entity) {
if(has<Comp>(entity)) {
return std::make_optional<Comp>(get<Comp>(entity));
} else {
return std::nullopt;
}
}
};
} // namespace DinkyECS

@ -0,0 +1,7 @@
#pragma once
namespace Events {
enum GUI {
START, NOOP
};
}

@ -0,0 +1,310 @@
#include "guecs.hpp"
#include "shaders.hpp"
#include "sound.hpp"
namespace guecs {
void Textual::init(lel::Cell &cell, shared_ptr<sf::Font> font_ptr) {
dbc::check(font_ptr != nullptr, "you failed to initialize this WideText");
if(font == nullptr) font = font_ptr;
if(text == nullptr) text = make_shared<sf::Text>(*font, content, size);
text->setFillColor(color);
if(centered) {
auto bounds = text->getLocalBounds();
auto text_cell = lel::center(bounds.size.x, bounds.size.y, cell);
// this stupid / 2 is because SFML renders from baseline rather than from the claimed bounding box
text->setPosition({float(text_cell.x), float(text_cell.y) - text_cell.h / 2});
} else {
text->setPosition({float(cell.x + padding * 2), float(cell.y + padding * 2)});
}
text->setCharacterSize(size);
}
void Textual::update(std::wstring& new_content) {
content = new_content;
text->setString(content);
}
void Sprite::init(lel::Cell &cell) {
auto sprite_texture = textures::get(name);
sprite = make_shared<sf::Sprite>(
*sprite_texture.texture,
sprite_texture.sprite->getTextureRect());
sprite->setPosition({
float(cell.x + padding),
float(cell.y + padding)});
auto bounds = sprite->getLocalBounds();
sprite->setScale({
float(cell.w - padding * 2) / bounds.size.x,
float(cell.h - padding * 2) / bounds.size.y});
}
void Rectangle::init(lel::Cell& cell) {
sf::Vector2f size{float(cell.w) - padding * 2, float(cell.h) - padding * 2};
if(shape == nullptr) shape = make_shared<sf::RectangleShape>(size);
shape->setPosition({float(cell.x + padding), float(cell.y + padding)});
shape->setFillColor(color);
shape->setOutlineColor(border_color);
shape->setOutlineThickness(border_px);
}
void Meter::init(lel::Cell& cell) {
bar.init(cell);
}
void Sound::play(bool hover) {
if(!hover) {
sound::play(on_click);
}
}
void Background::init() {
sf::Vector2f size{float(w), float(h)};
if(shape == nullptr) shape = make_shared<sf::RectangleShape>(size);
shape->setPosition({float(x), float(y)});
shape->setFillColor(color);
}
void Effect::init(lel::Cell &cell) {
$shader_version = shaders::version();
$shader = shaders::get(name);
$shader->setUniform("u_resolution", sf::Vector2f({float(cell.w), float(cell.h)}));
$clock = std::make_shared<sf::Clock>();
}
void Effect::step() {
sf::Time cur_time = $clock->getElapsedTime();
float u_time = cur_time.asSeconds();
if(u_time < $u_time_end) {
$shader->setUniform("u_duration", duration);
$shader->setUniform("u_time_end", $u_time_end);
$shader->setUniform("u_time", u_time);
} else {
$active = false;
}
}
void Effect::run() {
$active = true;
sf::Time u_time = $clock->getElapsedTime();
$u_time_end = u_time.asSeconds() + duration;
}
shared_ptr<sf::Shader> Effect::checkout_ptr() {
if(shaders::updated($shader_version)) {
$shader = shaders::get(name);
$shader_version = shaders::version();
}
return $shader;
}
UI::UI() {
$font = make_shared<sf::Font>(FONT_FILE_NAME);
}
void UI::position(int x, int y, int width, int height) {
$parser.position(x, y, width, height);
}
void UI::layout(std::string grid) {
$grid = grid;
bool good = $parser.parse($grid);
dbc::check(good, "LEL parsing failed.");
for(auto& [name, cell] : $parser.cells) {
auto ent = init_entity(name);
$world.set<lel::Cell>(ent, cell);
}
}
DinkyECS::Entity UI::init_entity(std::string name) {
auto entity = $world.entity();
// this lets you look up an entity by name
$name_ents.insert_or_assign(name, entity);
// this makes it easier to get the name during querying
$world.set<CellName>(entity, {name});
return entity;
}
DinkyECS::Entity UI::entity(std::string name) {
dbc::check($name_ents.contains(name),
fmt::format("GUECS entity {} does not exist. Forgot to init_entity?", name));
return $name_ents.at(name);
}
void UI::init() {
if($world.has_the<Background>()) {
auto& bg = $world.get_the<Background>();
bg.init();
}
$world.query<Background>([](auto, auto& bg) {
bg.init();
});
$world.query<lel::Cell, Rectangle>([](auto, auto& cell, auto& rect) {
rect.init(cell);
});
$world.query<lel::Cell, Effect>([](auto, auto& cell, auto& shader) {
shader.init(cell);
});
$world.query<Rectangle, Meter>([](auto, auto& bg, auto &) {
bg.shape->setFillColor(ColorValue::BLACK);
});
$world.query<lel::Cell, Meter>([](auto, auto &cell, auto& meter) {
meter.init(cell);
});
$world.query<lel::Cell, Textual>([this](auto, auto& cell, auto& text) {
text.init(cell, $font);
});
$world.query<lel::Cell, Label>([this](auto, auto& cell, auto& text) {
text.init(cell, $font);
});
$world.query<lel::Cell, Sprite>([&](auto, auto &cell, auto &sprite) {
sprite.init(cell);
});
}
void UI::debug_layout(sf::RenderWindow& window) {
$world.query<lel::Cell>([&](const auto, auto &cell) {
sf::RectangleShape rect{{float(cell.w), float(cell.h)}};
rect.setPosition({float(cell.x), float(cell.y)});
rect.setFillColor(sf::Color::Transparent);
rect.setOutlineColor(sf::Color::Red);
rect.setOutlineThickness(2.0f);
window.draw(rect);
});
}
void UI::render(sf::RenderWindow& window) {
if($world.has_the<Background>()) {
auto& bg = $world.get_the<Background>();
window.draw(*bg.shape);
}
$world.query<Effect>([&](auto, auto& shader) {
if(shader.$active) shader.step();
});
$world.query<Rectangle>([&](auto ent, auto& rect) {
render_helper(window, ent, true, rect.shape);
});
$world.query<lel::Cell, Meter>([&](auto ent, auto& cell, const auto &meter) {
float level = std::clamp(meter.percent, 0.0f, 1.0f) * float(cell.w);
// ZED: this 6 is a border width, make it a thing
meter.bar.shape->setSize({std::max(level, 0.0f), float(cell.h - 6)});
render_helper(window, ent, true, meter.bar.shape);
});
$world.query<Sprite>([&](auto ent, auto& sprite) {
render_helper(window, ent, false, sprite.sprite);
});
$world.query<Label>([&](auto ent, auto& text) {
render_helper(window, ent, false, text.text);
});
$world.query<Textual>([&](auto ent, auto& text) {
render_helper(window, ent, true, text.text);
});
}
bool UI::mouse(float x, float y, bool hover) {
int action_count = 0;
$world.query<lel::Cell, Clickable>([&](auto ent, auto& cell, auto &clicked) {
if((x >= cell.x && x <= cell.x + cell.w) &&
(y >= cell.y && y <= cell.y + cell.h))
{
do_if<Effect>(ent, [hover](auto& effect) {
effect.$shader->setUniform("hover", hover);
effect.run();
});
do_if<Sound>(ent, [hover](auto& sound) {
// here set that it played then only play once
sound.play(hover);
});
if(hover) return; // kinda gross
if(auto action_data = get_if<ActionData>(ent)) {
clicked.action(ent, action_data->data);
} else {
clicked.action(ent, {});
}
action_count++;
} else {
// via ORBLISHJ
// just reset the hover trigger for all that aren't hit
// then in the ^^ positive branch play it and set it played
}
});
return action_count > 0;
}
void UI::show_sprite(string region, string sprite_name) {
auto ent = entity(region);
if(!has<Sprite>(ent)) {
Sprite to_show{sprite_name};
auto& cell = cell_for(ent);
to_show.init(cell);
set<guecs::Sprite>(ent, to_show);
}
}
void UI::show_text(string region, wstring content) {
auto ent = entity(region);
if(auto text = get_if<Textual>(ent)) {
text->text->setString(content);
} else {
auto &cell = cell_for(ent);
Textual to_set{content, 20};
to_set.init(cell, $font);
to_set.text->setFillColor(ColorValue::LIGHT_MID);
set<Textual>(ent, to_set);
}
}
void UI::show_label(string region, wstring content) {
auto ent = entity(region);
if(auto text = get_if<Label>(ent)) {
text->text->setString(content);
} else {
auto &cell = cell_for(ent);
Label to_set{content, 20};
to_set.init(cell, $font);
to_set.text->setFillColor(ColorValue::LIGHT_MID);
set<Label>(ent, to_set);
}
}
Clickable make_action(DinkyECS::World& target, Events::GUI event) {
return {[&, event](auto ent, auto data){
// remember that ent is passed in from the UI::mouse handler
target.send<Events::GUI>(event, ent, data);
}};
}
}

@ -0,0 +1,235 @@
#pragma once
#include "color.hpp"
#include "dinkyecs.hpp"
#include "lel.hpp"
#include <string>
#include <memory>
#include <SFML/Graphics.hpp>
#include "textures.hpp"
#include <functional>
#include "events.hpp"
#include "constants.hpp"
#include <any>
#include "shaders.hpp"
namespace guecs {
using std::shared_ptr, std::make_shared, std::wstring, std::string;
struct Textual {
std::wstring content;
unsigned int size = GUECS_FONT_SIZE;
sf::Color color = GUECS_TEXT_COLOR;
int padding = GUECS_PADDING;
bool centered = false;
shared_ptr<sf::Font> font = nullptr;
shared_ptr<sf::Text> text = nullptr;
void init(lel::Cell &cell, shared_ptr<sf::Font> font_ptr);
void update(std::wstring& new_content);
};
struct Label : public Textual {
template<typename... Args>
Label(Args... args) : Textual(args...)
{
centered = true;
}
Label() {
centered = true;
};
};
struct Clickable {
/* This is actually called by UI::mouse and passed the entity ID of the
* button pressed so you can interact with it in the event handler.
*/
std::function<void(DinkyECS::Entity ent, std::any data)> action;
};
struct Sprite {
std::string name;
int padding = GUECS_PADDING;
std::shared_ptr<sf::Sprite> sprite = nullptr;
std::shared_ptr<sf::Texture> texture = nullptr;
void init(lel::Cell &cell);
};
struct Rectangle {
int padding = GUECS_PADDING;
sf::Color color = GUECS_FILL_COLOR;
sf::Color border_color = GUECS_BORDER_COLOR;
int border_px = GUECS_BORDER_PX;
shared_ptr<sf::RectangleShape> shape = nullptr;
void init(lel::Cell& cell);
};
struct Meter {
float percent = 1.0f;
Rectangle bar;
void init(lel::Cell& cell);
};
struct ActionData {
std::any data;
};
struct CellName {
std::string name;
};
struct Effect {
float duration = 0.1f;
std::string name{"ui_shader"};
float $u_time_end = 0.0;
bool $active = false;
std::shared_ptr<sf::Clock> $clock = nullptr;
std::shared_ptr<sf::Shader> $shader = nullptr;
int $shader_version = 0;
void init(lel::Cell &cell);
void run();
void step();
shared_ptr<sf::Shader> checkout_ptr();
};
struct Sound {
std::string on_click{"ui_click"};
void play(bool hover);
};
struct Background {
float x = 0.0f;
float y = 0.0f;
float w = 0.0f;
float h = 0.0f;
sf::Color color = GUECS_BG_COLOR;
shared_ptr<sf::RectangleShape> shape = nullptr;
Background(lel::Parser& parser, sf::Color bg_color=GUECS_BG_COLOR) :
x(parser.grid_x),
y(parser.grid_y),
w(parser.grid_w),
h(parser.grid_h),
color(bg_color)
{}
Background() {}
void init();
};
class UI {
public:
DinkyECS::World $world;
std::unordered_map<std::string, DinkyECS::Entity> $name_ents;
shared_ptr<sf::Font> $font = nullptr;
lel::Parser $parser;
std::string $grid = "";
UI();
void position(int x, int y, int width, int height);
void layout(std::string grid);
DinkyECS::Entity init_entity(std::string name);
DinkyECS::Entity entity(std::string name);
inline lel::CellMap& cells() {
return $parser.cells;
}
inline DinkyECS::World& world() {
return $world;
}
void init();
void render(sf::RenderWindow& window);
bool mouse(float x, float y, bool hover);
void debug_layout(sf::RenderWindow& window);
template <typename Comp>
void set(DinkyECS::Entity ent, Comp val) {
$world.set<Comp>(ent, val);
}
template <typename Comp>
void set_init(DinkyECS::Entity ent, Comp val) {
dbc::check(has<lel::Cell>(ent),"WRONG! slot is missing its cell?!");
auto& cell = get<lel::Cell>(ent);
val.init(cell);
$world.set<Comp>(ent, val);
}
template <typename Comp>
void do_if(DinkyECS::Entity ent, std::function<void(Comp &)> cb) {
if($world.has<Comp>(ent)) {
cb($world.get<Comp>(ent));
}
}
lel::Cell& cell_for(DinkyECS::Entity ent) {
return $world.get<lel::Cell>(ent);
}
lel::Cell& cell_for(std::string name) {
DinkyECS::Entity ent = entity(name);
return $world.get<lel::Cell>(ent);
}
template <typename Comp>
Comp& get(DinkyECS::Entity entity) {
return $world.get<Comp>(entity);
}
template <typename Comp>
std::optional<Comp> get_if(DinkyECS::Entity entity) {
return $world.get_if<Comp>(entity);
}
template <typename Comp>
bool has(DinkyECS::Entity entity) {
return $world.has<Comp>(entity);
}
template <typename Comp>
void remove(DinkyECS::Entity ent) {
$world.remove<Comp>(ent);
}
template <typename Comp>
void close(string region) {
auto ent = entity(region);
remove<Comp>(ent);
}
template<typename T>
void render_helper(sf::RenderWindow& window, DinkyECS::Entity ent, bool is_shape, T& target) {
sf::Shader *shader_ptr = nullptr;
if($world.has<Effect>(ent)) {
auto& shader = $world.get<Effect>(ent);
if(shader.$active) {
auto ptr = shader.checkout_ptr();
ptr->setUniform("is_shape", is_shape);
// NOTE: this is needed because SFML doesn't handle shared_ptr
shader_ptr = ptr.get();
}
}
window.draw(*target, shader_ptr);
}
void show_sprite(string region, string sprite_name);
void show_text(string region, wstring content);
void update_text(string region, wstring content);
void update_label(string region, wstring content);
void show_label(string region, wstring content);
};
Clickable make_action(DinkyECS::World& target, Events::GUI event);
}

@ -0,0 +1,117 @@
#include "lel.hpp"
#include <fmt/core.h>
#include "dbc.hpp"
#include <numeric>
#include "lel_parser.cpp"
namespace lel {
Parser::Parser(int x, int y, int width, int height) :
grid_x(x),
grid_y(y),
grid_w(width),
grid_h(height),
cur(0, 0)
{
}
Parser::Parser() : cur(0, 0) { }
void Parser::position(int x, int y, int width, int height) {
grid_x = x;
grid_y = y;
grid_w = width;
grid_h = height;
}
void Parser::id(std::string name) {
if(name != "_") {
dbc::check(!cells.contains(name),
fmt::format("duplicate cell name {}", name));
cells.insert_or_assign(name, cur);
}
cur = {cur.col + 1, cur.row};
auto& row = grid.back();
row.push_back(name);
}
void Parser::finalize() {
size_t rows = grid.size();
int cell_height = grid_h / rows;
for(auto& row : grid) {
size_t columns = row.size();
int cell_width = grid_w / columns;
dbc::check(cell_width > 0, "invalid cell width calc");
dbc::check(cell_height > 0, "invalid cell height calc");
for(auto& name : row) {
if(name == "_") continue;
auto& cell = cells.at(name);
// ZED: getting a bit hairy but this should work
if(cell.percent) {
// when percent mode we have to take unset to 100%
if(cell.max_w == 0) cell.max_w = 100;
if(cell.max_h == 0) cell.max_h = 100;
cell.max_w *= cell_width * 0.01;
cell.max_h *= cell_height * 0.01;
} else {
if(cell.max_w == 0) cell.max_w = cell_width;
if(cell.max_h == 0) cell.max_h = cell_height;
}
cell.w = cell.expand ? std::min(cell.max_w, grid_w) : std::min(cell_width, cell.max_w);
cell.h = cell.expand ? std::min(cell.max_h, grid_h) : std::min(cell_height, cell.max_h);
dbc::check(cell.h > 0, fmt::format("invalid height cell {}", name));
dbc::check(cell.w > 0, fmt::format("invalid width cell {}", name));
cell.x = grid_x + (cell.col * cell_width);
cell.y = grid_y + (cell.row * cell_height);
// keep the midpoint since it is used a lot
cell.mid_x = std::midpoint(cell.x, cell.x + cell.w);
cell.mid_y = std::midpoint(cell.y, cell.y + cell.h);
// perform alignments
if(cell.right) cell.x += cell_width - cell.w;
if(cell.bottom) cell.y += cell_height - cell.h;
if(cell.center) {
cell.x = cell.mid_x - cell.w / 2;
cell.y = cell.mid_y - cell.h / 2;
}
}
}
}
void Parser::reset() {
cur = {0, 0};
grid.clear();
cells.clear();
}
std::optional<std::string> Parser::hit(int x, int y) {
for(auto& [name, cell] : cells) {
if((x >= cell.x && x <= cell.x + cell.w) &&
(y >= cell.y && y <= cell.y + cell.h)) {
return name;
}
}
return std::nullopt;
}
Cell center(int width, int height, Cell &parent) {
Cell copy = parent;
copy.x = parent.mid_x - width / 2;
copy.y = parent.mid_y - height / 2;
copy.w = width;
copy.h = height;
return copy;
}
}

@ -0,0 +1,57 @@
#pragma once
#include <string>
#include <unordered_map>
#include <functional>
#include <optional>
#include <vector>
#include "dbc.hpp"
namespace lel {
struct Cell {
int x = 0;
int y = 0;
int w = 0;
int h = 0;
int mid_x = 0;
int mid_y = 0;
int max_w = 0;
int max_h = 0;
int col = 0;
int row = 0;
bool right = false;
bool bottom = false;
bool expand = false;
bool center = false;
bool percent = false;
Cell(int col, int row) : col(col), row(row) {}
Cell() {}
};
using Row = std::vector<std::string>;
using CellMap = std::unordered_map<std::string, Cell>;
struct Parser {
int grid_x = 0;
int grid_y = 0;
int grid_w = 0;
int grid_h = 0;
Cell cur;
std::vector<Row> grid;
CellMap cells;
Parser(int x, int y, int width, int height);
Parser();
void position(int x, int y, int width, int height);
void id(std::string name);
void reset();
bool parse(std::string input);
void finalize();
std::optional<std::string> hit(int x, int y);
};
Cell center(int width, int height, Cell &parent);
}

@ -0,0 +1,263 @@
#line 1 "lel_parser.rl"
/***** !!!!!! THIS IS INCLUDED BY lel.cpp DO NOT PUT IN BUILD!!!!!! ******/
#include "lel.hpp"
#include <fmt/core.h>
#include <iostream>
namespace lel {
#line 42 "lel_parser.rl"
#line 12 "lel_parser.cpp"
static const char _Parser_actions[] = {
0, 1, 1, 1, 2, 1, 3, 1,
4, 1, 5, 1, 6, 1, 9, 1,
10, 1, 11, 1, 12, 1, 13, 2,
0, 7, 2, 0, 8, 2, 4, 1,
2, 4, 5
};
static const char _Parser_key_offsets[] = {
0, 0, 4, 20, 33, 35, 39, 41,
44, 56, 61
};
static const char _Parser_trans_keys[] = {
32, 91, 9, 13, 32, 37, 40, 42,
46, 61, 94, 95, 9, 13, 60, 62,
65, 90, 97, 122, 37, 40, 42, 46,
61, 94, 95, 60, 62, 65, 90, 97,
122, 48, 57, 41, 44, 48, 57, 48,
57, 41, 48, 57, 32, 93, 95, 124,
9, 13, 48, 57, 65, 90, 97, 122,
32, 93, 124, 9, 13, 32, 91, 9,
13, 0
};
static const char _Parser_single_lengths[] = {
0, 2, 8, 7, 0, 2, 0, 1,
4, 3, 2
};
static const char _Parser_range_lengths[] = {
0, 1, 4, 3, 1, 1, 1, 1,
4, 1, 1
};
static const char _Parser_index_offsets[] = {
0, 0, 4, 17, 28, 30, 34, 36,
39, 48, 53
};
static const char _Parser_indicies[] = {
0, 2, 0, 1, 3, 4, 5, 6,
7, 9, 7, 10, 3, 8, 10, 10,
1, 4, 5, 6, 7, 9, 7, 10,
8, 10, 10, 1, 11, 1, 12, 13,
14, 1, 15, 1, 16, 17, 1, 18,
20, 19, 21, 18, 19, 19, 19, 1,
22, 23, 24, 22, 1, 25, 2, 25,
1, 0
};
static const char _Parser_trans_targs[] = {
1, 0, 2, 2, 3, 4, 3, 3,
3, 3, 8, 5, 3, 6, 5, 7,
3, 7, 9, 8, 10, 2, 9, 10,
2, 10
};
static const char _Parser_trans_actions[] = {
0, 0, 3, 0, 17, 0, 13, 5,
11, 15, 21, 19, 23, 23, 0, 19,
26, 0, 7, 0, 32, 29, 0, 9,
1, 0
};
static const int Parser_start = 1;
static const int Parser_first_final = 10;
static const int Parser_error = 0;
static const int Parser_en_main = 1;
#line 45 "lel_parser.rl"
bool Parser::parse(std::string input) {
reset();
int cs = 0;
const char *start = nullptr;
const char *begin = input.data();
const char *p = input.data();
const char *pe = p + input.size();
std::string tk;
#line 93 "lel_parser.cpp"
{
cs = Parser_start;
}
#line 56 "lel_parser.rl"
#line 96 "lel_parser.cpp"
{
int _klen;
unsigned int _trans;
const char *_acts;
unsigned int _nacts;
const char *_keys;
if ( p == pe )
goto _test_eof;
if ( cs == 0 )
goto _out;
_resume:
_keys = _Parser_trans_keys + _Parser_key_offsets[cs];
_trans = _Parser_index_offsets[cs];
_klen = _Parser_single_lengths[cs];
if ( _klen > 0 ) {
const char *_lower = _keys;
const char *_mid;
const char *_upper = _keys + _klen - 1;
while (1) {
if ( _upper < _lower )
break;
_mid = _lower + ((_upper-_lower) >> 1);
if ( (*p) < *_mid )
_upper = _mid - 1;
else if ( (*p) > *_mid )
_lower = _mid + 1;
else {
_trans += (unsigned int)(_mid - _keys);
goto _match;
}
}
_keys += _klen;
_trans += _klen;
}
_klen = _Parser_range_lengths[cs];
if ( _klen > 0 ) {
const char *_lower = _keys;
const char *_mid;
const char *_upper = _keys + (_klen<<1) - 2;
while (1) {
if ( _upper < _lower )
break;
_mid = _lower + (((_upper-_lower) >> 1) & ~1);
if ( (*p) < _mid[0] )
_upper = _mid - 2;
else if ( (*p) > _mid[1] )
_lower = _mid + 2;
else {
_trans += (unsigned int)((_mid - _keys)>>1);
goto _match;
}
}
_trans += _klen;
}
_match:
_trans = _Parser_indicies[_trans];
cs = _Parser_trans_targs[_trans];
if ( _Parser_trans_actions[_trans] == 0 )
goto _again;
_acts = _Parser_actions + _Parser_trans_actions[_trans];
_nacts = (unsigned int) *_acts++;
while ( _nacts-- > 0 )
{
switch ( *_acts++ )
{
case 0:
#line 13 "lel_parser.rl"
{tk = input.substr(start - begin, p - start); }
break;
case 1:
#line 15 "lel_parser.rl"
{}
break;
case 2:
#line 16 "lel_parser.rl"
{ grid.push_back(Row()); }
break;
case 3:
#line 17 "lel_parser.rl"
{ cur.bottom = (*p) == '.'; }
break;
case 4:
#line 18 "lel_parser.rl"
{ id(input.substr(start - begin, p - start)); }
break;
case 5:
#line 19 "lel_parser.rl"
{ cur.col = 0; cur.row++; }
break;
case 6:
#line 20 "lel_parser.rl"
{ cur.right = (*p) == '>'; }
break;
case 7:
#line 21 "lel_parser.rl"
{cur.max_w = std::stoi(tk); }
break;
case 8:
#line 22 "lel_parser.rl"
{ cur.max_h = std::stoi(tk); }
break;
case 9:
#line 23 "lel_parser.rl"
{ cur.expand = true; }
break;
case 10:
#line 24 "lel_parser.rl"
{ cur.center = true; }
break;
case 11:
#line 25 "lel_parser.rl"
{ cur.percent = true; }
break;
case 12:
#line 35 "lel_parser.rl"
{ start = p; }
break;
case 13:
#line 38 "lel_parser.rl"
{start = p;}
break;
#line 211 "lel_parser.cpp"
}
}
_again:
if ( cs == 0 )
goto _out;
if ( ++p != pe )
goto _resume;
_test_eof: {}
_out: {}
}
#line 57 "lel_parser.rl"
bool good = pe - p == 0;
if(good) {
finalize();
} else {
dbc::log("error at:");
std::cout << p;
}
return good;
}
}

@ -0,0 +1,68 @@
/***** !!!!!! THIS IS INCLUDED BY lel.cpp DO NOT PUT IN BUILD!!!!!! ******/
#include "lel.hpp"
#include <fmt/core.h>
#include <iostream>
namespace lel {
%%{
machine Parser;
alphtype char;
action token {tk = input.substr(start - begin, fpc - start); }
action col {}
action ltab { grid.push_back(Row()); }
action valign { cur.bottom = fc == '.'; }
action id { id(input.substr(start - begin, fpc - start)); }
action row { cur.col = 0; cur.row++; }
action align { cur.right = fc == '>'; }
action setwidth {cur.max_w = std::stoi(tk); }
action setheight { cur.max_h = std::stoi(tk); }
action expand { cur.expand = true; }
action center { cur.center = true; }
action percent { cur.percent = true; }
col = "|" $col;
ltab = "[" $ltab;
rtab = "]" $row;
valign = ("^" | ".") $valign;
expand = "*" $expand;
center = "=" $center;
percent = "%" $percent;
halign = ("<" | ">") $align;
number = digit+ >{ start = fpc; } %token;
setw = ("(" number %setwidth ("," number %setheight)? ")") ;
modifiers = (percent | center | expand | valign | halign | setw);
id = modifiers* ((alpha | '_')+ :>> (alnum | '_')*) >{start = fpc;} %id;
row = space* ltab space* id space* (col space* id space*)* space* rtab space*;
main := row+;
}%%
%% write data;
bool Parser::parse(std::string input) {
reset();
int cs = 0;
const char *start = nullptr;
const char *begin = input.data();
const char *p = input.data();
const char *pe = p + input.size();
std::string tk;
%% write init;
%% write exec;
bool good = pe - p == 0;
if(good) {
finalize();
} else {
dbc::log("error at:");
std::cout << p;
}
return good;
}
}

@ -0,0 +1,31 @@
#include "matrix.hpp"
#include "dbc.hpp"
#include <fmt/core.h>
#include <cmath>
#include <cstdlib>
#include "constants.hpp"
using namespace fmt;
using std::min, std::max;
namespace matrix {
void dump(const std::string &msg, Matrix &map, int show_x, int show_y) {
println("----------------- {}", msg);
for(each_row it{map}; it.next();) {
int cell = map[it.y][it.x];
if(int(it.x) == show_x && int(it.y) == show_y) {
print("{:x}<", cell);
} else if(cell > 15 && cell < 32) {
print("{:x}+", cell - 16);
} else if(cell > 31) {
print("* ");
} else {
print("{:x} ", cell);
}
if(it.row) print("\n");
}
}
}

@ -0,0 +1,49 @@
#pragma once
#include <vector>
#include <queue>
#include <string>
#include <array>
#include <numeric>
#include <algorithm>
#include <fmt/core.h>
#include "dbc.hpp"
#include "shiterator.hpp"
namespace matrix {
using Row = shiterator::BaseRow<int>;
using Matrix = shiterator::Base<int>;
using viewport = shiterator::viewport_t<Matrix>;
using each_cell = shiterator::each_cell_t<Matrix>;
using each_row = shiterator::each_row_t<Matrix>;
using box = shiterator::box_t<Matrix>;
using compass = shiterator::compass_t<Matrix>;
using circle = shiterator::circle_t<Matrix>;
using rectangle = shiterator::rectangle_t<Matrix>;
using rando_rect = shiterator::rando_rect_t<Matrix>;
using line = shiterator::line;
void dump(const std::string &msg, Matrix &map, int show_x=-1, int show_y=-1);
inline Matrix make(size_t width, size_t height) {
return shiterator::make<int>(width, height);
}
inline bool inbounds(Matrix &mat, size_t x, size_t y) {
return shiterator::inbounds(mat, x, y);
}
inline size_t width(Matrix &mat) {
return shiterator::width(mat);
}
inline size_t height(Matrix &mat) {
return shiterator::height(mat);
}
inline void assign(Matrix &out, int new_value) {
shiterator::assign(out, new_value);
}
}

@ -93,16 +93,23 @@ dependencies += [
] ]
sources = [ sources = [
'game_engine.cpp', 'builder.cpp',
'config.cpp',
'dbc.cpp', 'dbc.cpp',
'game_engine.cpp',
'guecs.cpp',
'gui.cpp', 'gui.cpp',
'watcher.cpp', 'lel.cpp',
'builder.cpp', 'matrix.cpp',
'rand.cpp',
'sfmlbackend.cpp', 'sfmlbackend.cpp',
'shaders.cpp',
'sound.cpp',
'textures.cpp',
'watcher.cpp',
] ]
executable('ttpit', sources + [
executable('escape_turings_tarpit', sources + [
'main.cpp' 'main.cpp'
], ],
cpp_args: cpp_args, cpp_args: cpp_args,

@ -0,0 +1,20 @@
#pragma once
#include <vector>
struct Point {
size_t x = 0;
size_t y = 0;
bool operator==(const Point& other) const {
return other.x == x && other.y == y;
}
};
typedef std::vector<Point> PointList;
template<> struct std::hash<Point> {
size_t operator()(const Point& p) const {
auto hasher = std::hash<int>();
return hasher(p.x) ^ hasher(p.y);
}
};

@ -0,0 +1,6 @@
#include "rand.hpp"
namespace Random {
std::random_device RNG;
std::mt19937 GENERATOR(RNG());
}

@ -0,0 +1,28 @@
#pragma once
#include <random>
namespace Random {
extern std::mt19937 GENERATOR;
template<typename T>
T uniform(T from, T to) {
std::uniform_int_distribution<T> rand(from, to);
return rand(GENERATOR);
}
template<typename T>
T uniform_real(T from, T to) {
std::uniform_real_distribution<T> rand(from, to);
return rand(GENERATOR);
}
template<typename T>
T normal(T mean, T stddev) {
std::normal_distribution<T> rand(mean, stddev);
return rand(GENERATOR);
}
}

@ -0,0 +1,77 @@
#include "shaders.hpp"
#include <SFML/Graphics/Image.hpp>
#include "dbc.hpp"
#include <fmt/core.h>
#include "config.hpp"
#include <memory>
namespace shaders {
using std::shared_ptr, std::make_shared;
static ShaderManager SMGR;
static bool INITIALIZED = false;
static int VERSION = 0;
inline void configure_shader_defaults(std::shared_ptr<sf::Shader> ptr) {
ptr->setUniform("source", sf::Shader::CurrentTexture);
}
bool load_shader(std::string name, nlohmann::json& settings) {
std::string file_name = settings["file_name"];
auto ptr = std::make_shared<sf::Shader>();
bool good = ptr->loadFromFile(file_name, sf::Shader::Type::Fragment);
if(good) {
configure_shader_defaults(ptr);
SMGR.shaders.try_emplace(name, name, file_name, ptr);
}
return good;
}
void init() {
if(!INITIALIZED) {
dbc::check(sf::Shader::isAvailable(), "no shaders?!");
INITIALIZED = true;
Config config("assets/shaders.json");
bool good = load_shader("ERROR", config["ERROR"]);
dbc::check(good, "Failed to load ERROR shader. Look in assets/shaders.json");
for(auto& [name, settings] : config.json().items()) {
if(name == "ERROR") continue;
dbc::check(!SMGR.shaders.contains(name),
fmt::format("shader name '{}' duplicated in assets/shaders.json", name));
good = load_shader(name, settings);
if(!good) {
dbc::log(fmt::format("failed to load shader {}", name));
SMGR.shaders.insert_or_assign(name, SMGR.shaders.at("ERROR"));
}
}
}
}
std::shared_ptr<sf::Shader> get(const std::string& name) {
dbc::check(INITIALIZED, "you forgot to shaders::init()");
dbc::check(SMGR.shaders.contains(name),
fmt::format("shader name '{}' not in assets/shaders.json", name));
auto& rec = SMGR.shaders.at(name);
return rec.ptr;
}
int reload() {
VERSION++;
INITIALIZED = false;
SMGR.shaders.clear();
init();
return VERSION;
}
bool updated(int my_version) {
return my_version != VERSION;
}
int version() {
return VERSION;
}
};

@ -0,0 +1,28 @@
#pragma once
#include <cstdint>
#include <vector>
#include <string>
#include <SFML/Graphics.hpp>
#include <unordered_map>
#include <memory>
#include "matrix.hpp"
#include <nlohmann/json.hpp>
namespace shaders {
struct Record {
std::string name;
std::string file_name;
std::shared_ptr<sf::Shader> ptr = nullptr;
};
struct ShaderManager {
std::unordered_map<std::string, Record> shaders;
};
std::shared_ptr<sf::Shader> get(const std::string& name);
void init();
bool load_shader(std::string& name, nlohmann::json& settings);
bool updated(int my_version);
int reload();
int version();
}

@ -0,0 +1,607 @@
#pragma once
#include <vector>
#include <queue>
#include <string>
#include <array>
#include <numeric>
#include <algorithm>
#include <fmt/core.h>
#include "point.hpp"
#include "rand.hpp"
#include "dbc.hpp"
/*
* # What is This Shit?
*
* Announcing the Shape Iterators, or "shiterators" for short. The best shite
* for C++ for-loops since that [one youtube
* video](https://www.youtube.com/watch?v=rX0ItVEVjHc) told everyone to
* recreate SQL databases with structs. You could also say these are Shaw's
* Iterators, but either way they are the _shite_. Or are they shit? You decide.
* Maybe they're "shite"?
*
* A shiterator is a simple generator that converts 2D shapes into a 1D stream
* of x/y coordinates. You give it a matrix, some parameters like start, end,
* etc. and each time you call `next()` you get the next viable x/y coordinate to
* complete the shape. This makes them far superior to _any_ existing for-loop
* technology because shiterators operate _intelligently_ in shapes. Other
* [programming pundits](https://www.youtube.com/watch?v=tD5NrevFtbU) will say
* their 7000 line "easy to maintain" switch statements are better at drawing
* shapes, but they're wrong. My way of making a for-loop do stuff is vastly
* superior because it doesn't use a switch _or_ a virtual function _or_
* inheritance at all. That means they have to be the _fastest_. Feel free to run
* them 1000 times and bask in the glory of 1 nanosecond difference performance.
*
* It's science and shite.
*
* More importantly, shiterators are simple and easy to use. They're so easy to
* use you _don't even use the 3rd part of the for-loop_. What? You read that right,
* not only have I managed to eliminate _both_ massive horrible to maintain switches,
* and also avoided virtual functions, but I've also _eliminated one entire part
* of the for-loop_. This obviously makes them way faster than other inferior
* three-clause-loop-trash. Just look at this comparison:
*
* ```cpp
* for(it = trash.begin(); it != trash.end(); it++) {
* std::cout << it << std::endl;
* }
* ```
*
* ```cpp
* for(each_cell it{mat}; it.next();) {
* std::cout << mat[it.y][it.x] << std::endl;
* }
* ```
*
* Obviously this will outperform _any_ iterator invented in the last 30 years, but the best
* thing about shiterators is their composability and ability to work simultaneously across
* multiple matrices in one loop:
*
* ```cpp
* for(line it{start, end}; it.next();) {
* for(compass neighbor{walls, it.x, it.y}; neighbor.next();) {
* if(walls[neighbor.y][neighbor.x] == 1) {
* wall_update[it.y][it.x] = walls[it.y][it.x] + 10;
* }
* }
* }
* ```
*
* This code sample (maybe, because I didn't run it) draws a line from
* `start` to `end` then looks at each neighbor on a compass (north, south, east, west)
* at each point to see if it's set to 1. If it is then it copies that cell over to
* another matrix with +10. Why would you need this? Your Wizard just shot a fireball
* down a corridor and you need to see if anything in the path is within 1 square of it.
*
* You _also_ don't even need to use a for-loop. Yes, you can harken back to the old
* days when we did everything RAW inside a Duff's Device between a while-loop for
* that PERFORMANCE because who cares about maintenance? You're a game developer! Tests?
* Don't need a test if it runs fine on Sony Playstation only. Maintenance? You're moving
* on to the next project in two weeks anyway right?! Use that while-loop and a shiterator
* to really help that next guy:
*
* ```cpp
* box it{walls, center_x, center_y, 20};
* while(it.next()) {
* walls[it.y][it.x] = 1;
* }
* ```
*
* ## Shiterator "Guarantees"
*
* Just like Rust [guarantees no memory leaks](https://github.com/pop-os/cosmic-comp/issues/1133),
* a shiterator tries to ensure a few things, if it can:
*
* 1. All x/y values will be within the Matrix you give it. The `line` shiterator doesn't though.
* 2. They try to not store anything and only calculate the math necessary to linearlize the shape.
* 3. You can store them and incrementally call next to get the next value.
* 4. You should be able to compose them together on the same Matrix or different matrices of the same dimensions.
* 5. Most of them will only require 1 for-loop, the few that require 2 only do this so you can draw the inside of a shape. `circle` is like this.
* 6. They don't assume any particular classes or require subclassing. As long as the type given enables `mat[y][x]` (row major) access then it'll work.
* 7. The matrix given to a shiterator isn't actually attached to it, so you can use one matrix to setup an iterator, then apply the x/y values to any other matrix of the same dimensions. Great for smart copying and transforming.
* 8. More importantly, shiterators _do not return any values from the matrix_. They only do the math for coordinates and leave it to you to work your matrix.
*
* These shiterators are used all over the game to do map rendering, randomization, drawing, nearly everything that involves a shape.
*
* ## Algorithms I Need
*
* I'm currently looking for a few algorithms, so if you know how to do these let me know:
*
* 1. _Flood fill_ This turns out to be really hard because most algorithms require keeping track of visited cells with a queue, recursion, etc.
* 2. _Random rectangle fill_ I have something that mostly works but it's really only random across each y-axis, then separate y-axes are randomized.
* 3. _Dijkstra Map_ I have a Dijkstra algorithm but it's not in this style yet. Look in `worldbuilder.cpp` for my current implementation.
* 4. _Viewport_ Currently working on this but I need to have a rectangle I can move around as a viewport.
*
*
* ## Usage
*
* Check the `matrix.hpp` for an example if you want to make it more conventient for your own type.
*
* ## Thanks
*
* Special thanks to Amit and hirdrac for their help with the math and for
* giving me the initial idea. hirdrac doesn't want to be held responsible for
* this travesty but he showed me that you can do iteration and _not_ use the
* weird C++ iterators. Amit did a lot to show me how to do these calculations
* without branching. Thanks to you both--and to everyone else--for helping me while I
* stream my development.
*
* ### SERIOUS DISCLAIMER
*
* I am horribly bad at trigonometry and graphics algorithms, so if you've got an idea to improve them
* or find a bug shoot me an email at help@learncodethehardway.com.
*/
namespace shiterator { using std::vector, std::queue, std::array; using
std::min, std::max, std::floor;
template<typename T>
using BaseRow = vector<T>;
template<typename T>
using Base = vector<BaseRow<T>>;
template<typename T>
inline Base<T> make(size_t width, size_t height) {
Base<T> result(height, BaseRow<T>(width));
return result;
}
/*
* Just a quick thing to reset a matrix to a value.
*/
template<typename MAT, typename VAL>
inline void assign(MAT &out, VAL new_value) {
for(auto &row : out) {
row.assign(row.size(), new_value);
}
}
/*
* Tells you if a coordinate is in bounds of the matrix
* and therefore safe to use.
*/
template<typename MAT>
inline bool inbounds(MAT &mat, size_t x, size_t y) {
// since Point.x and Point.y are size_t any negatives are massive
return (y < mat.size()) && (x < mat[0].size());
}
/*
* Gives the width of a matrix. Assumes row major (y/x)
* and vector API .size().
*/
template<typename MAT>
inline size_t width(MAT &mat) {
return mat[0].size();
}
/*
* Same as shiterator::width but just the height.
*/
template<typename MAT>
inline size_t height(MAT &mat) {
return mat.size();
}
/*
* These are internal calculations that help
* with keeping track of the next x coordinate.
*/
inline size_t next_x(size_t x, size_t width) {
return (x + 1) * ((x + 1) < width);
}
/*
* Same as next_x but updates the next y coordinate.
* It uses the fact that when x==0 you have a new
* line so increment y.
*/
inline size_t next_y(size_t x, size_t y) {
return y + (x == 0);
}
/*
* Figures out if you're at the end of the shape,
* which is usually when y > height.
*/
inline bool at_end(size_t y, size_t height) {
return y < height;
}
/*
* Determines if you're at the end of a row.
*/
inline bool end_row(size_t x, size_t width) {
return x == width - 1;
}
/*
* Most basic shiterator. It just goes through
* every cell in the matrix in linear order
* with not tracking of anything else.
*/
template<typename MAT>
struct each_cell_t {
size_t x = ~0;
size_t y = ~0;
size_t width = 0;
size_t height = 0;
each_cell_t(MAT &mat)
{
height = shiterator::height(mat);
width = shiterator::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
return at_end(y, height);
}
};
/*
* This is just each_cell_t but it sets
* a boolean value `bool row` so you can
* tell when you've reached the end of a
* row. This is mostly used for printing
* out a matrix and similar just drawing the
* whole thing with its boundaries.
*/
template<typename MAT>
struct each_row_t {
size_t x = ~0;
size_t y = ~0;
size_t width = 0;
size_t height = 0;
bool row = false;
each_row_t(MAT &mat) {
height = shiterator::height(mat);
width = shiterator::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
row = end_row(x, width);
return at_end(y, height);
}
};
/*
* This is a CENTERED box, that will create
* a centered rectangle around a point of a
* certain dimension. This kind of needs a
* rewrite but if you want a rectangle from
* a upper corner then use rectangle_t type.
*
* Passing 1 parameter for the size will make
* a square.
*/
template<typename MAT>
struct box_t {
size_t from_x;
size_t from_y;
size_t x = 0; // these are set in constructor
size_t y = 0; // again, no fancy ~ trick needed
size_t left = 0;
size_t top = 0;
size_t right = 0;
size_t bottom = 0;
box_t(MAT &mat, size_t at_x, size_t at_y, size_t size) :
box_t(mat, at_x, at_y, size, size) {
}
box_t(MAT &mat, size_t at_x, size_t at_y, size_t width, size_t height) :
from_x(at_x), from_y(at_y)
{
size_t h = shiterator::height(mat);
size_t w = shiterator::width(mat);
// keeps it from going below zero
// need extra -1 to compensate for the first next()
left = max(from_x, width) - width;
x = left - 1; // must be -1 for next()
// keeps it from going above width
right = min(from_x + width + 1, w);
// same for these two
top = max(from_y, height) - height;
y = top - (left == 0);
bottom = min(from_y + height + 1, h);
}
bool next() {
// calc next but allow to go to 0 for next
x = next_x(x, right);
// x will go to 0, which signals new line
y = next_y(x, y); // this must go here
// if x==0 then this moves it to min_x
x = max(x, left);
// and done
return at_end(y, bottom);
}
/*
* This was useful for doing quick lighting
* calculations, and I might need to implement
* it in other shiterators. It gives the distance
* to the center from the current x/y.
*/
float distance() {
int dx = from_x - x;
int dy = from_y - y;
return sqrt((dx * dx) + (dy * dy));
}
};
/*
* Stupid simple compass shape North/South/East/West.
* This comes up a _ton_ when doing searching, flood
* algorithms, collision, etc. Probably not the
* fastest way to do it but good enough.
*/
template<typename MAT>
struct compass_t {
size_t x = 0; // these are set in constructor
size_t y = 0; // again, no fancy ~ trick needed
array<int, 4> x_dirs{0, 1, 0, -1};
array<int, 4> y_dirs{-1, 0, 1, 0};
size_t max_dirs=0;
size_t dir = ~0;
compass_t(MAT &mat, size_t x, size_t y) :
x(x), y(y)
{
array<int, 4> x_in{0, 1, 0, -1};
array<int, 4> y_in{-1, 0, 1, 0};
for(size_t i = 0; i < 4; i++) {
int nx = x + x_in[i];
int ny = y + y_in[i];
if(shiterator::inbounds(mat, nx, ny)) {
x_dirs[max_dirs] = nx;
y_dirs[max_dirs] = ny;
max_dirs++;
}
}
}
bool next() {
dir++;
if(dir < max_dirs) {
x = x_dirs[dir];
y = y_dirs[dir];
return true;
} else {
return false;
}
}
};
/*
* Draws a line from start to end using a algorithm from
* https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
* No idea if the one I picked is best but it's the one
* that works in the shiterator requirements and produced
* good results.
*
* _WARNING_: This one doesn't check if the start/end are
* within your Matrix, as it's assumed _you_ did that
* already.
*/
struct line {
int x;
int y;
int x1;
int y1;
int sx;
int sy;
int dx;
int dy;
int error;
line(Point start, Point end) :
x(start.x), y(start.y),
x1(end.x), y1(end.y)
{
dx = std::abs(x1 - x);
sx = x < x1 ? 1 : -1;
dy = std::abs(y1 - y) * -1;
sy = y < y1 ? 1 : -1;
error = dx + dy;
}
bool next() {
if(x != x1 || y != y1) {
int e2 = 2 * error;
if(e2 >= dy) {
error = error + dy;
x = x + sx;
}
if(e2 <= dx) {
error = error + dx;
y = y + sy;
}
return true;
} else {
return false;
}
}
};
/*
* Draws a simple circle using a fairly naive algorithm
* but one that actually worked. So, so, so, so many
* circle drawing algorithms described online don't work
* or are flat wrong. Even the very best I could find
* did overdrawing of multiple lines or simply got the
* math wrong. Keep in mind, _I_ am bad at this trig math
* so if I'm finding errors in your circle drawing then
* you got problems.
*
* This one is real simple, and works. If you got better
* then take the challenge but be ready to get it wrong.
*/
template<typename MAT>
struct circle_t {
float center_x;
float center_y;
float radius = 0.0f;
int y = 0;
int dx = 0;
int dy = 0;
int left = 0;
int right = 0;
int top = 0;
int bottom = 0;
int width = 0;
int height = 0;
circle_t(MAT &mat, Point center, float radius) :
center_x(center.x), center_y(center.y), radius(radius)
{
width = shiterator::width(mat);
height = shiterator::height(mat);
top = max(int(floor(center_y - radius)), 0);
bottom = min(int(floor(center_y + radius)), height - 1);
y = top;
}
bool next() {
y++;
if(y <= bottom) {
dy = y - center_y;
dx = floor(sqrt(radius * radius - dy * dy));
left = max(0, int(center_x) - dx);
right = min(width, int(center_x) + dx + 1);
return true;
} else {
return false;
}
}
};
/*
* Basic rectangle shiterator, and like box and rando_rect_t you can
* pass only 1 parameter for size to do a square.
*/
template<typename MAT>
struct rectangle_t {
int x;
int y;
int top;
int left;
int width;
int height;
int right;
int bottom;
rectangle_t(MAT &mat, size_t start_x, size_t start_y, size_t size) :
rectangle_t(mat, start_x, start_y, size, size) {
}
rectangle_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
top(start_y),
left(start_x),
width(width),
height(height)
{
size_t h = shiterator::height(mat);
size_t w = shiterator::width(mat);
y = start_y - 1;
x = left - 1; // must be -1 for next()
right = min(start_x + width, w);
y = start_y;
bottom = min(start_y + height, h);
}
bool next() {
x = next_x(x, right);
y = next_y(x, y);
x = max(x, left);
return at_end(y, bottom);
}
};
/*
* WIP: This one is used to place entities randomly but
* could be used for effects like random destruction of floors.
* It simply "wraps" the rectangle_t but randomizes the x/y values
* using a random starting point. This makes it random across the
* x-axis but only partially random across the y.
*/
template<typename MAT>
struct rando_rect_t {
int x;
int y;
int x_offset;
int y_offset;
rectangle_t<MAT> it;
rando_rect_t(MAT &mat, size_t start_x, size_t start_y, size_t size) :
rando_rect_t(mat, start_x, start_y, size, size) {
}
rando_rect_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
it{mat, start_x, start_y, width, height}
{
x_offset = Random::uniform(0, int(width));
y_offset = Random::uniform(0, int(height));
}
bool next() {
bool done = it.next();
x = it.left + ((it.x + x_offset) % it.width);
y = it.top + ((it.y + y_offset) % it.height);
return done;
}
};
/*
* BROKEN: I'm actually not sure what I'm trying to
* do here yet.
*/
template<typename MAT>
struct viewport_t {
Point start;
// this is the point in the map
size_t x;
size_t y;
// this is the point inside the box, start at 0
size_t view_x = ~0;
size_t view_y = ~0;
// viewport width/height
size_t width;
size_t height;
viewport_t(MAT &mat, Point start, int max_x, int max_y) :
start(start),
x(start.x-1),
y(start.y-1)
{
width = std::min(size_t(max_x), shiterator::width(mat) - start.x);
height = std::min(size_t(max_y), shiterator::height(mat) - start.y);
fmt::println("viewport_t max_x, max_y {},{} vs matrix {},{}, x={}, y={}",
max_x, max_y, shiterator::width(mat), shiterator::height(mat), x, y);
}
bool next() {
y = next_y(x, y);
x = next_x(x, width);
view_x = next_x(view_x, width);
view_y = next_y(view_x, view_y);
return at_end(y, height);
}
};
}

@ -0,0 +1,82 @@
#include "sound.hpp"
#include "dbc.hpp"
#include <fmt/core.h>
#include "config.hpp"
namespace sound {
static SoundManager SMGR;
static bool initialized = false;
static bool muted = false;
using namespace fmt;
using std::make_shared;
namespace fs = std::filesystem;
SoundPair& get_sound_pair(const std::string& name) {
dbc::check(initialized, "You need to call sound::init() first");
if(SMGR.sounds.contains(name)) {
// get the sound from the sound map
return SMGR.sounds.at(name);
} else {
dbc::log(fmt::format("Attempted to stop {} sound but not available.",
name));
return SMGR.sounds.at("blank");
}
}
void init() {
if(!initialized) {
Config assets("assets/config.json");
for(auto& el : assets["sounds"].items()) {
load(el.key(), el.value());
}
initialized = true;
}
}
void load(const std::string& name, const std::string& sound_path) {
dbc::check(fs::exists(sound_path), fmt::format("sound file {} does not exist", sound_path));
// create the buffer and keep in the buffer map
auto buffer = make_shared<sf::SoundBuffer>(sound_path);
// set it on the sound and keep in the sound map
auto sound = make_shared<sf::Sound>(*buffer);
sound->setRelativeToListener(false);
sound->setPosition({0.0f, 0.0f, 1.0f});
SMGR.sounds.try_emplace(name, buffer, sound);
}
void play(const std::string& name, bool loop) {
if(muted) return;
auto& pair = get_sound_pair(name);
pair.sound->setLooping(loop);
// play it
pair.sound->play();
}
void stop(const std::string& name) {
auto& pair = get_sound_pair(name);
pair.sound->stop();
}
bool playing(const std::string& name) {
auto& pair = get_sound_pair(name);
auto status = pair.sound->getStatus();
return status == sf::SoundSource::Status::Playing;
}
void play_at(const std::string& name, float x, float y, float z) {
auto& pair = get_sound_pair(name);
pair.sound->setPosition({x, y, z});
pair.sound->play();
}
void mute(bool setting) {
muted = setting;
}
}

@ -0,0 +1,26 @@
#pragma once
#include <string>
#include <filesystem>
#include <memory>
#include <unordered_map>
#include <SFML/Audio.hpp>
namespace sound {
struct SoundPair {
std::shared_ptr<sf::SoundBuffer> buffer;
std::shared_ptr<sf::Sound> sound;
};
struct SoundManager {
std::unordered_map<std::string, SoundPair> sounds;
};
void init();
void load(const std::string& name, const std::string& path);
void play(const std::string& name, bool loop=false);
void play_at(const std::string& name, float x, float y, float z);
void stop(const std::string& name);
void mute(bool setting);
bool playing(const std::string& name);
SoundPair& get_sound_pair(const std::string& name);
}

@ -0,0 +1,99 @@
#include "textures.hpp"
#include <SFML/Graphics/Image.hpp>
#include "dbc.hpp"
#include <fmt/core.h>
#include "config.hpp"
#include <memory>
namespace textures {
using std::shared_ptr, std::make_shared;
static TextureManager TMGR;
static bool initialized = false;
void load_sprites() {
Config assets("assets/config.json");
for(auto& [name, settings] : assets["sprites"].items()) {
auto texture = make_shared<sf::Texture>(settings["path"]);
texture->setSmooth(assets["graphics"]["smooth_textures"]);
auto sprite = make_shared<sf::Sprite>(*texture);
int width = settings["frame_width"];
int height = settings["frame_height"];
sprite->setTextureRect({{0,0}, {width, height}});
TMGR.sprite_textures.try_emplace(name, name, sprite, texture);
}
TMGR.floor = load_image(assets["sprites"]["floor"]["path"]);
TMGR.ceiling = load_image(assets["sprites"]["ceiling"]["path"]);
}
void load_tiles() {
Config assets("assets/tiles.json");
auto &tiles = assets.json();
for(auto &el : tiles.items()) {
auto &config = el.value();
TMGR.surfaces.emplace_back(load_image(config["texture"]));
wchar_t tid = config["display"];
int surface_i = TMGR.surfaces.size() - 1;
TMGR.char_to_texture[tid] = surface_i;
}
}
void init() {
if(!initialized) {
load_tiles();
load_sprites();
initialized = true;
}
}
SpriteTexture get(std::string name) {
dbc::check(initialized, "you forgot to call textures::init()");
dbc::check(TMGR.sprite_textures.contains(name),
fmt::format("!!!!! texture pack does not contain {} sprite", name));
auto result = TMGR.sprite_textures.at(name);
dbc::check(result.sprite != nullptr,
fmt::format("bad sprite from textures::get named {}", name));
dbc::check(result.texture != nullptr,
fmt::format("bad texture from textures::get named {}", name));
return result;
}
sf::Image load_image(std::string filename) {
sf::Image texture;
bool good = texture.loadFromFile(filename);
dbc::check(good, fmt::format("failed to load {}", filename));
return texture;
}
const uint32_t* get_surface(size_t num) {
return (const uint32_t *)TMGR.surfaces[num].getPixelsPtr();
}
matrix::Matrix convert_char_to_texture(matrix::Matrix &tile_ids) {
auto result = matrix::make(matrix::width(tile_ids), matrix::height(tile_ids));
for(matrix::each_cell it(tile_ids); it.next();) {
wchar_t tid = tile_ids[it.y][it.x];
result[it.y][it.x] = TMGR.char_to_texture.at(tid);
}
return result;
}
const uint32_t* get_floor() {
return (const uint32_t *)TMGR.floor.getPixelsPtr();
}
const uint32_t* get_ceiling() {
return (const uint32_t *)TMGR.ceiling.getPixelsPtr();
}
};

@ -0,0 +1,39 @@
#pragma once
#include <cstdint>
#include <vector>
#include <string>
#include <SFML/Graphics.hpp>
#include <unordered_map>
#include <memory>
#include "matrix.hpp"
namespace textures {
struct SpriteTexture {
std::string name;
std::shared_ptr<sf::Sprite> sprite = nullptr;
std::shared_ptr<sf::Texture> texture = nullptr;
};
struct TextureManager {
std::vector<sf::Image> surfaces;
std::unordered_map<std::string, SpriteTexture> sprite_textures;
std::unordered_map<wchar_t, int> char_to_texture;
sf::Image floor;
sf::Image ceiling;
};
void init();
SpriteTexture get(std::string name);
sf::Image load_image(std::string filename);
const uint32_t* get_surface(size_t num);
matrix::Matrix convert_char_to_texture(matrix::Matrix &from);
const uint32_t* get_floor();
const uint32_t* get_ceiling();
}
Loading…
Cancel
Save