Exploring raycasters and possibly make a little "doom like" game based on it.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
raycaster/ai.hpp

96 lines
2.4 KiB

#pragma once
#include <vector>
#include "matrix.hpp"
#include <bitset>
#include <limits>
#include <optional>
#include <nlohmann/json.hpp>
#include "config.hpp"
namespace ai {
constexpr const int SCORE_MAX = std::numeric_limits<int>::max();
constexpr const size_t STATE_MAX = 32;
using State = std::bitset<STATE_MAX>;
const State ALL_ZERO;
const State ALL_ONES = ~ALL_ZERO;
struct Action {
std::string $name;
int $cost = 0;
State $positive_preconds;
State $negative_preconds;
State $positive_effects;
State $negative_effects;
Action(std::string name, int cost) :
$name(name), $cost(cost) { }
void needs(int name, bool val);
void effect(int name, bool val);
bool can_effect(State& state);
State apply_effect(State& state);
bool operator==(const Action& other) const {
return other.$name == $name;
}
};
using Script = std::deque<Action>;
const Action FINAL_ACTION("END", SCORE_MAX);
struct ActionState {
Action action;
State state;
ActionState(Action action, State state) :
action(action), state(state) {}
bool operator==(const ActionState& other) const {
return other.action == action && other.state == state;
}
};
bool is_subset(State& source, State& target);
int distance_to_goal(State& from, State& to);
std::optional<Script> plan_actions(std::vector<Action>& actions, State& start, State& goal);
struct AIManager {
nlohmann::json profile;
std::unordered_map<std::string, Action> actions;
std::unordered_map<std::string, State> states;
std::unordered_map<std::string, std::vector<Action>> scripts;
};
void init();
Action config_action(nlohmann::json& profile, nlohmann::json& config);
State config_state(nlohmann::json& profile, nlohmann::json& config);
int state_id(std::string name);
State load_state(std::string state_name);
Action load_action(std::string action_name);
std::vector<Action> load_script(std::string script_name);
std::optional<Script> plan(std::string script_name, State start, State goal);
}
template<> struct std::hash<ai::Action> {
size_t operator()(const ai::Action& p) const {
return std::hash<std::string>{}(p.$name);
}
};
template<> struct std::hash<ai::ActionState> {
size_t operator()(const ai::ActionState& p) const {
return std::hash<ai::Action>{}(p.action) ^ std::hash<ai::State>{}(p.state);
}
};