You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
257 lines
7.8 KiB
257 lines
7.8 KiB
#include "dbc.hpp"
|
|
#include "ai.hpp"
|
|
|
|
namespace ai {
|
|
using namespace nlohmann;
|
|
using namespace dbc;
|
|
|
|
bool is_subset(State& source, State& target) {
|
|
State result = source & target;
|
|
return result == target;
|
|
}
|
|
|
|
void Action::needs(int name, bool val) {
|
|
if(val) {
|
|
$positive_preconds[name] = true;
|
|
$negative_preconds[name] = false;
|
|
} else {
|
|
$negative_preconds[name] = true;
|
|
$positive_preconds[name] = false;
|
|
}
|
|
}
|
|
|
|
void Action::effect(int name, bool val) {
|
|
if(val) {
|
|
$positive_effects[name] = true;
|
|
$negative_effects[name] = false;
|
|
} else {
|
|
$negative_effects[name] = true;
|
|
$positive_effects[name] = false;
|
|
}
|
|
}
|
|
|
|
|
|
bool Action::can_effect(State& state) {
|
|
return ((state & $positive_preconds) == $positive_preconds) &&
|
|
((state & $negative_preconds) == ALL_ZERO);
|
|
}
|
|
|
|
State Action::apply_effect(State& state) {
|
|
return (state | $positive_effects) & ~$negative_effects;
|
|
}
|
|
|
|
int distance_to_goal(State& from, State& to) {
|
|
auto result = from ^ to;
|
|
return result.count();
|
|
}
|
|
|
|
Script reconstruct_path(std::unordered_map<Action, Action>& came_from, Action& current) {
|
|
Script total_path{current};
|
|
int count = 0;
|
|
|
|
while(came_from.contains(current) && count++ < 10) {
|
|
current = came_from.at(current);
|
|
if(current != FINAL_ACTION) {
|
|
total_path.push_front(current);
|
|
}
|
|
}
|
|
|
|
return total_path;
|
|
}
|
|
|
|
inline int h(State& start, State& goal) {
|
|
return distance_to_goal(start, goal);
|
|
}
|
|
|
|
inline int d(State& start, State& goal) {
|
|
return distance_to_goal(start, goal);
|
|
}
|
|
|
|
ActionState find_lowest(std::unordered_map<ActionState, int>& open_set) {
|
|
check(!open_set.empty(), "open set can't be empty in find_lowest");
|
|
const ActionState *result = nullptr;
|
|
int lowest_score = SCORE_MAX;
|
|
|
|
for(auto& kv : open_set) {
|
|
if(kv.second < lowest_score) {
|
|
lowest_score = kv.second;
|
|
result = &kv.first;
|
|
}
|
|
}
|
|
|
|
return *result;
|
|
}
|
|
|
|
std::optional<Script> plan_actions(std::vector<Action>& actions, State& start, State& goal) {
|
|
std::unordered_map<ActionState, int> open_set;
|
|
std::unordered_map<Action, Action> came_from;
|
|
std::unordered_map<State, int> g_score;
|
|
|
|
ActionState start_state{FINAL_ACTION, start};
|
|
|
|
g_score[start] = 0;
|
|
open_set[start_state] = g_score[start] + h(start, goal);
|
|
|
|
while(!open_set.empty()) {
|
|
auto current = find_lowest(open_set);
|
|
|
|
if(is_subset(current.state, goal)) {
|
|
return std::make_optional<Script>(reconstruct_path(came_from, current.action));
|
|
}
|
|
|
|
open_set.erase(current);
|
|
|
|
for(auto& neighbor_action : actions) {
|
|
// calculate the State being current/neighbor
|
|
if(!neighbor_action.can_effect(current.state)) {
|
|
continue;
|
|
}
|
|
|
|
auto neighbor = neighbor_action.apply_effect(current.state);
|
|
int d_score = d(current.state, neighbor);
|
|
int tentative_g_score = g_score[current.state] + d_score;
|
|
int neighbor_g_score = g_score.contains(neighbor) ? g_score[neighbor] : SCORE_MAX;
|
|
if(tentative_g_score < neighbor_g_score) {
|
|
came_from.insert_or_assign(neighbor_action, current.action);
|
|
|
|
g_score[neighbor] = tentative_g_score;
|
|
// open_set gets the fScore
|
|
ActionState neighbor_as{neighbor_action, neighbor};
|
|
open_set[neighbor_as] = tentative_g_score + h(neighbor, goal);
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
static AIManager AIMGR;
|
|
static bool initialized = false;
|
|
|
|
inline void validate_profile(nlohmann::json& profile) {
|
|
for(auto& [name_key, value] : profile.items()) {
|
|
check(value < STATE_MAX,
|
|
fmt::format("profile field {} has value {} greater than STATE_MAX {}", (std::string)name_key, (int)value, STATE_MAX));
|
|
}
|
|
}
|
|
|
|
Action config_action(nlohmann::json& profile, nlohmann::json& config) {
|
|
check(config.contains("name"), "config_action: action config missing name");
|
|
check(config.contains("cost"), "config_action: action config missing cost");
|
|
|
|
validate_profile(profile);
|
|
|
|
Action result(config["name"], config["cost"]);
|
|
|
|
check(config.contains("needs"),
|
|
fmt::format("config_action: no 'needs' field", result.$name));
|
|
check(config.contains("effects"),
|
|
fmt::format("config_action: no 'effects' field", result.$name));
|
|
|
|
for(auto& [name_key, value] : config["needs"].items()) {
|
|
check(profile.contains(name_key), fmt::format("config_action: profile does not have name {}", result.$name, name_key));
|
|
int name = profile[name_key].template get<int>();
|
|
|
|
result.needs(name, bool(value));
|
|
}
|
|
|
|
for(auto& [name_key, value] : config["effects"].items()) {
|
|
check(profile.contains(name_key), fmt::format("config_action: profile does not have name {}", result.$name, name_key));
|
|
|
|
int name = profile[name_key].template get<int>();
|
|
|
|
result.effect(name, bool(value));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
State config_state(nlohmann::json& profile, nlohmann::json& config) {
|
|
State result;
|
|
validate_profile(profile);
|
|
|
|
for(auto& [name_key, value] : config.items()) {
|
|
check(profile.contains(name_key), fmt::format("config_state: profile does not have name {}", name_key));
|
|
|
|
int name = profile[name_key].template get<int>();
|
|
result[name] = bool(value);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void init() {
|
|
initialized = true;
|
|
Config config("assets/ai.json");
|
|
|
|
// profile specifies what keys (bitset indexes) are allowed
|
|
// and how they map to the bitset of State
|
|
AIMGR.profile = config["profile"];
|
|
validate_profile(AIMGR.profile);
|
|
|
|
// load all actions
|
|
auto& actions = config["actions"];
|
|
for(auto& action_vars : actions) {
|
|
auto the_action = config_action(AIMGR.profile, action_vars);
|
|
AIMGR.actions.insert_or_assign(the_action.$name, the_action);
|
|
}
|
|
|
|
// load all states
|
|
auto& states = config["states"];
|
|
for(auto& [name, state_vars] : states.items()) {
|
|
auto the_state = config_state(AIMGR.profile, state_vars);
|
|
AIMGR.states.insert_or_assign(name, the_state);
|
|
}
|
|
|
|
auto& scripts = config["scripts"];
|
|
for(auto& [script_name, action_names] : scripts.items()) {
|
|
std::vector<Action> the_script;
|
|
for(auto name : action_names) {
|
|
|
|
check(AIMGR.actions.contains(name),
|
|
fmt::format("ai::init(): script {} uses action {} that doesn't exist",
|
|
(std::string)script_name, (std::string)name));
|
|
|
|
the_script.push_back(AIMGR.actions.at(name));
|
|
}
|
|
|
|
AIMGR.scripts.insert_or_assign(script_name, the_script);
|
|
}
|
|
}
|
|
|
|
State load_state(std::string state_name) {
|
|
check(initialized, "you forgot to initialize the AI first.");
|
|
check(AIMGR.states.contains(state_name), fmt::format(
|
|
"ai::load_state({}): state does not exist in config",
|
|
state_name));
|
|
|
|
return AIMGR.states.at(state_name);
|
|
}
|
|
|
|
Action load_action(std::string action_name) {
|
|
check(initialized, "you forgot to initialize the AI first.");
|
|
check(AIMGR.states.contains(action_name), fmt::format(
|
|
"ai::load_action({}): action does not exist in config",
|
|
action_name));
|
|
return AIMGR.actions.at(action_name);
|
|
}
|
|
|
|
std::vector<Action> load_script(std::string script_name) {
|
|
check(AIMGR.scripts.contains(script_name), fmt::format(
|
|
"ai::load_script(): no script named {} configured", script_name));
|
|
return AIMGR.scripts.at(script_name);
|
|
}
|
|
|
|
std::optional<Script> plan(std::string script_name, State start, State goal) {
|
|
check(initialized, "you forgot to initialize the AI first.");
|
|
auto script = load_script(script_name);
|
|
return plan_actions(script, start, goal);
|
|
}
|
|
|
|
int state_id(std::string name) {
|
|
check(AIMGR.profile.contains(name), fmt::format(
|
|
"ai::state_id({}): id is not configured in profile",
|
|
name));
|
|
return AIMGR.profile.at(name);
|
|
}
|
|
}
|
|
|