Exploring raycasters and possibly make a little "doom like" game based on it.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
raycaster/tests/goap.cpp

329 lines
8.7 KiB

#include <catch2/catch_test_macros.hpp>
#include "dbc.hpp"
#include <iostream>
#include <vector>
#include "levelmanager.hpp"
#include "matrix.hpp"
#include "components.hpp"
#include <bitset>
#include <limits>
using namespace dbc;
using namespace components;
constexpr const int SCORE_MAX = std::numeric_limits<int>::max();
constexpr const size_t STATE_MAX = 16;
using GOAPState = std::bitset<STATE_MAX>;
bool is_subset(GOAPState& source, GOAPState& target) {
GOAPState result = source & target;
return result == target;
}
struct Action {
std::string name;
int cost = 0;
std::unordered_map<int, bool> preconds;
std::unordered_map<int, bool> effects;
Action(std::string name, int cost) :
name(name), cost(cost) {}
bool can_effect(GOAPState& state) {
for(auto [name, setting] : preconds) {
if(state[name] != setting) return false;
}
return true;
}
GOAPState apply_effect(GOAPState& state) {
// RCR SUGGEST: state = (state & ~write_mask) | effect
auto state_cp = state;
for(auto [name, setting] : effects) {
state_cp[name] = setting;
}
return state_cp;
}
bool operator==(const Action& other) const {
return other.name == name;
}
};
template<> struct std::hash<Action> {
size_t operator()(const Action& p) const {
return std::hash<std::string>{}(p.name);
}
};
const Action FINAL_ACTION("END", SCORE_MAX);
struct ActionState {
Action action;
GOAPState state;
ActionState(Action action, GOAPState state) :
action(action), state(state) {}
bool operator==(const ActionState& other) const {
return other.action == action && other.state == state;
}
};
template<> struct std::hash<ActionState> {
size_t operator()(const ActionState& p) const {
return std::hash<Action>{}(p.action) ^ std::hash<GOAPState>{}(p.state);
}
};
using AStarPath = std::deque<Action>;
int distance_to_goal(GOAPState& from, GOAPState& to) {
auto result = from ^ to;
return result.count();
}
AStarPath reconstruct_path(std::unordered_map<Action, Action>& came_from, Action& current) {
AStarPath total_path{current};
int count = 0;
while(came_from.contains(current) && count++ < 10) {
current = came_from.at(current);
if(current != FINAL_ACTION) {
total_path.push_front(current);
}
}
return total_path;
}
inline int h(GOAPState& start, GOAPState& goal) {
return distance_to_goal(start, goal);
}
inline int d(GOAPState& start, GOAPState& goal) {
return distance_to_goal(start, goal);
}
inline ActionState find_lowest(std::unordered_map<ActionState, int>& open_set) {
dbc::check(!open_set.empty(), "open set can't be empty in find_lowest");
const ActionState *result = nullptr;
int lowest_score = SCORE_MAX;
for(auto& kv : open_set) {
if(kv.second < lowest_score) {
lowest_score = kv.second;
result = &kv.first;
}
}
return *result;
}
// map is the list of possible actions
// start and goal are two world states
std::optional<AStarPath> plan_actions(std::vector<Action>& actions, GOAPState& start, GOAPState& goal) {
std::unordered_map<ActionState, int> open_set;
std::unordered_map<Action, Action> came_from;
std::unordered_map<GOAPState, int> g_score;
ActionState start_state{FINAL_ACTION, start};
g_score[start] = 0;
open_set[start_state] = g_score[start] + h(start, goal);
while(!open_set.empty()) {
auto current = find_lowest(open_set);
if(is_subset(current.state, goal)) {
return std::make_optional<AStarPath>(reconstruct_path(came_from, current.action));
}
open_set.erase(current);
for(auto& neighbor_action : actions) {
// calculate the GOAPState being current/neighbor
if(!neighbor_action.can_effect(current.state)) {
continue;
}
auto neighbor = neighbor_action.apply_effect(current.state);
int d_score = d(current.state, neighbor);
int tentative_g_score = g_score[current.state] + d_score;
int neighbor_g_score = g_score.contains(neighbor) ? g_score[neighbor] : SCORE_MAX;
if(tentative_g_score < neighbor_g_score) {
came_from.insert_or_assign(neighbor_action, current.action);
g_score[neighbor] = tentative_g_score;
// open_set gets the fScore
ActionState neighbor_as{neighbor_action, neighbor};
open_set[neighbor_as] = tentative_g_score + h(neighbor, goal);
}
}
}
return std::nullopt;
}
TEST_CASE("worldstate works", "[goap]") {
enum StateNames {
ENEMY_IN_RANGE,
ENEMY_DEAD
};
GOAPState goal;
GOAPState start;
std::vector<Action> actions;
// start off enemy not dead and not in range
start[ENEMY_DEAD] = false;
start[ENEMY_IN_RANGE] = false;
// end goal is enemy is dead
goal[ENEMY_DEAD] = true;
Action move_closer("move_closer", 10);
move_closer.preconds[ENEMY_IN_RANGE] = false;
move_closer.effects[ENEMY_IN_RANGE] = true;
REQUIRE(move_closer.can_effect(start));
auto after_move_state = move_closer.apply_effect(start);
REQUIRE(start[ENEMY_IN_RANGE] == false);
REQUIRE(after_move_state[ENEMY_IN_RANGE] == true);
REQUIRE(after_move_state[ENEMY_DEAD] == false);
// start is clean but after move is dirty
REQUIRE(move_closer.can_effect(start));
REQUIRE(!move_closer.can_effect(after_move_state));
REQUIRE(distance_to_goal(start, after_move_state) == 1);
Action kill_it("kill_it", 10);
kill_it.preconds[ENEMY_IN_RANGE] = true;
kill_it.preconds[ENEMY_DEAD] = false;
kill_it.effects[ENEMY_DEAD] = true;
REQUIRE(!kill_it.can_effect(start));
REQUIRE(kill_it.can_effect(after_move_state));
auto after_kill_state = kill_it.apply_effect(after_move_state);
REQUIRE(!kill_it.can_effect(after_kill_state));
REQUIRE(distance_to_goal(after_move_state, after_kill_state) == 1);
actions.push_back(kill_it);
actions.push_back(move_closer);
REQUIRE(start != goal);
}
TEST_CASE("basic feature tests", "[goap]") {
enum StateNames {
ENEMY_IN_RANGE,
ENEMY_DEAD
};
GOAPState goal;
GOAPState start;
std::vector<Action> actions;
// start off enemy not dead and not in range
start[ENEMY_DEAD] = false;
start[ENEMY_IN_RANGE] = false;
// end goal is enemy is dead
goal[ENEMY_DEAD] = true;
Action move_closer("move_closer", 10);
move_closer.preconds[ENEMY_IN_RANGE] = false;
move_closer.effects[ENEMY_IN_RANGE] = true;
Action kill_it("kill_it", 10);
kill_it.preconds[ENEMY_IN_RANGE] = true;
kill_it.preconds[ENEMY_DEAD] = false;
kill_it.effects[ENEMY_DEAD] = true;
// order seems to matter which is wrong
actions.push_back(kill_it);
actions.push_back(move_closer);
auto result = plan_actions(actions, start, goal);
REQUIRE(result != std::nullopt);
auto state = start;
for(auto& action : *result) {
fmt::println("ACTION: {}", action.name);
state = action.apply_effect(state);
}
REQUIRE(state[ENEMY_DEAD]);
}
TEST_CASE("wargame test from cppGOAP", "[goap]") {
std::vector<Action> actions;
// Constants for the various states are helpful to keep us from
// accidentally mistyping a state name.
enum WarGameStates {
target_acquired,
target_lost,
target_in_warhead_range,
target_dead
};
// Now establish all the possible actions for the action pool
// In this example we're providing the AI some different FPS actions
Action spiral("searchSpiral", 5);
spiral.preconds[target_acquired] = false;
spiral.preconds[target_lost] = true;
spiral.effects[target_acquired] = true;
actions.push_back(spiral);
Action serpentine("searchSerpentine", 5);
serpentine.preconds[target_acquired] = false;
serpentine.preconds[target_lost] = false;
serpentine.effects[target_acquired] = true;
actions.push_back(serpentine);
Action intercept("interceptTarget", 5);
intercept.preconds[target_acquired] = true;
intercept.preconds[target_dead] = false;
intercept.effects[target_in_warhead_range] = true;
actions.push_back(intercept);
Action detonateNearTarget("detonateNearTarget", 5);
detonateNearTarget.preconds[target_in_warhead_range] = true;
detonateNearTarget.preconds[target_acquired] = true;
detonateNearTarget.preconds[target_dead] = false;
detonateNearTarget.effects[target_dead] = true;
actions.push_back(detonateNearTarget);
// Here's the initial state...
GOAPState initial_state;
initial_state[target_acquired] = false;
initial_state[target_lost] = true;
initial_state[target_in_warhead_range] = false;
initial_state[target_dead] = false;
// ...and the goal state
GOAPState goal_target_dead;
goal_target_dead[target_dead] = true;
auto result = plan_actions(actions, initial_state, goal_target_dead);
REQUIRE(result != std::nullopt);
auto state = initial_state;
for(auto& action : *result) {
fmt::println("ACTION: {}", action.name);
state = action.apply_effect(state);
}
REQUIRE(state[target_dead]);
}