Exploring raycasters and possibly make a little "doom like" game based on it.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
raycaster/maze.cpp

260 lines
5.8 KiB

#include <fmt/core.h>
#include <string>
#include "rand.hpp"
#include "constants.hpp"
#include "maze.hpp"
using std::string;
using matrix::Matrix;
inline size_t rand(size_t i, size_t j) {
if(i < j) {
return Random::uniform(i, j);
} else if(j < i) {
return Random::uniform(j, i);
} else {
return i;
}
}
inline bool split_dir(size_t iDim, size_t jDim) {
if(iDim < jDim) {
return false;
} else if(jDim < iDim) {
return true;
} else {
return Random::uniform(0, 1);
}
}
inline bool good_hole(Matrix &map, size_t split, size_t hole, bool horiz) {
if(hole % 2 == 0) return false;
size_t j = horiz ? split : hole;
size_t i = horiz ? hole : split;
if(map[j][i] == WALL_PATH_LIMIT) return false;
return true;
}
void divide(Matrix& map, std::vector<Room> &rooms,
Point iCoords, Point jCoords, bool horizontal) {
int iDim = iCoords.y - iCoords.x;
int jDim = jCoords.y - jCoords.x;
bool punch_room = false;
if(iDim <= 0 || jDim <= 0) {
return;
} else if(iDim <= 2 && jDim <= 2) {
fmt::println("MADE ROOM! {},{}; {},{}",
iCoords.x, iCoords.y, jCoords.x, jCoords.y);
punch_room = true;
}
if(horizontal) {
size_t split = 0;
do {
split = rand(iCoords.x, iCoords.x + iDim + 1);
} while(split % 2);
size_t hole = 0;
do {
hole = rand(jCoords.x, jCoords.x + jDim +1);
} while(good_hole(map, split, hole, horizontal));
for(size_t j = jCoords.x; j <= jCoords.y; j++) {
if(j != hole) {
map[split][j] = WALL_PATH_LIMIT;
}
}
divide(map, rooms,
{iCoords.x, size_t(split - 1)},
jCoords,
split_dir(split - iCoords.x - 1, jDim));
divide(map, rooms,
{size_t(split + 1), iCoords.y},
jCoords,
split_dir(iCoords.x - split - 1, jDim));
} else {
size_t split = 0;
do {
split = rand(jCoords.x, jCoords.x + jDim + 1);
} while(split % 2);
size_t hole = 0;
do {
hole = rand(iCoords.x, iCoords.x + iDim + 1);
} while(good_hole(map, split, hole, horizontal));
for(size_t i = iCoords.x; i <= iCoords.y; i++) {
if(i != hole) {
map[i][split] = WALL_PATH_LIMIT;
}
}
divide(map, rooms,
iCoords,
{jCoords.x, size_t(split - 1)},
split_dir(iDim, split - jCoords.x - 1));
divide(map, rooms,
iCoords,
{size_t(split + 1), jCoords.y},
Random::uniform(0, 1));
}
if(punch_room) {
// for(size_t j = jCoords.x; j <= jCoords.y; j++) {
// for(size_t i = iCoords.x; i <= iCoords.y; i++) {
// map[j][i] = 0;
// }
// }
Room room{iCoords.x, jCoords.x, iCoords.y - iCoords.x + 1, jCoords.y - jCoords.x + 1};
for(auto r : rooms) {
if(r.x == room.x && r.y == room.y) {
return;
}
}
rooms.push_back(room);
}
}
void maze::recursive_div(Matrix& map, std::vector<Room>& rooms) {
size_t width = matrix::width(map);
size_t height = matrix::height(map);
for(size_t i = 0; i < height; i++) {
for(size_t j = 0; j < width; j++) {
int val = (i == 0 ||
j == 0 ||
i == height - 1 ||
j == width - 1);
map[i][j] = val == 1 ? WALL_PATH_LIMIT : 0;
}
}
divide(map, rooms, {1, height - 2}, {1, width - 2}, split_dir(1, 1));
}
bool complete(Matrix& maze) {
size_t width = matrix::width(maze);
size_t height = matrix::height(maze);
for(size_t row = 1; row < height; row += 2) {
for(size_t col = 1; col < width; col += 2) {
if(maze[row][col] != 0) return false;
}
}
// dbc::sentinel("LOL it's complete eh?");
return true;
}
std::vector<Point> neighborsAB(Matrix& maze, Point on) {
std::vector<Point> result;
std::array<Point, 4> points{{
{on.x, on.y - 2},
{on.x, on.y + 2},
{on.x - 2, on.y},
{on.x + 2, on.y}
}};
for(auto point : points) {
if(matrix::inbounds(maze, point.x, point.y)) {
result.push_back(point);
}
}
return result;
}
std::vector<Point> neighbors(Matrix& maze, Point on) {
std::vector<Point> result;
std::array<Point, 4> points{{
{on.x, on.y - 2},
{on.x, on.y + 2},
{on.x - 2, on.y},
{on.x + 2, on.y}
}};
for(auto point : points) {
if(matrix::inbounds(maze, point.x, point.y)) {
if(maze[point.y][point.x] == WALL_PATH_LIMIT) {
result.push_back(point);
}
}
}
return result;
}
std::pair<Point, Point> findCoord(Matrix& maze) {
size_t width = matrix::width(maze);
size_t height = matrix::height(maze);
for(size_t y = 1; y < height; y += 2) {
for(size_t x = 1; x < width; x += 2) {
if(maze[y][x] == WALL_PATH_LIMIT) {
auto found = neighborsAB(maze, {x, y});
for(auto point : found) {
if(maze[point.y][point.x] == 0) {
return {{x, y}, point};
}
}
}
}
}
matrix::dump("BAD MAZE", maze);
dbc::sentinel("failed to find coord?");
}
void maze::hunt_and_kill(Matrix& maze, std::vector<Room>& rooms) {
size_t width = matrix::width(maze);
size_t height = matrix::height(maze);
matrix::assign(maze, WALL_PATH_LIMIT);
Room start{2, 2, 3, 3};
rooms.push_back(start);
Room goal{width-4, height-4, 3, 3};
rooms.push_back(goal);
for(auto& room : rooms) {
for(matrix::box it{maze, room.x, room.y, 1}; it.next();) {
maze[it.y][it.x] = 0;
}
}
Point on{1,1};
while(!complete(maze)) {
auto n = neighbors(maze, on);
if(n.size() == 0) {
auto t = findCoord(maze);
on = t.first;
maze[on.y][on.x] = 0;
size_t row = (on.y + t.second.y) / 2;
size_t col = (on.x + t.second.x) / 2;
maze[row][col] = 0;
} else {
auto nb = n[Random::uniform(size_t(0), n.size() - 1)];
maze[nb.y][nb.x] = 0;
size_t row = (nb.y + on.y) / 2;
size_t col = (nb.x + on.x) / 2;
maze[row][col] = 0;
on = nb;
}
}
}