You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
5.4 KiB
190 lines
5.4 KiB
#include "dbc.hpp"
|
|
#include "goap.hpp"
|
|
#include "ai_debug.hpp"
|
|
#include "stats.hpp"
|
|
#include <queue>
|
|
|
|
namespace ai {
|
|
|
|
using namespace nlohmann;
|
|
using namespace dbc;
|
|
|
|
bool is_subset(State& source, State& target) {
|
|
State result = source & target;
|
|
return result == target;
|
|
}
|
|
|
|
void Action::needs(int name, bool val) {
|
|
if(val) {
|
|
$positive_preconds[name] = true;
|
|
$negative_preconds[name] = false;
|
|
} else {
|
|
$negative_preconds[name] = true;
|
|
$positive_preconds[name] = false;
|
|
}
|
|
}
|
|
|
|
void Action::effect(int name, bool val) {
|
|
if(val) {
|
|
$positive_effects[name] = true;
|
|
$negative_effects[name] = false;
|
|
} else {
|
|
$negative_effects[name] = true;
|
|
$positive_effects[name] = false;
|
|
}
|
|
}
|
|
|
|
void Action::ignore(int name) {
|
|
$positive_preconds[name] = false;
|
|
$negative_preconds[name] = false;
|
|
}
|
|
|
|
bool Action::can_effect(State& state) {
|
|
return ((state & $positive_preconds) == $positive_preconds) &&
|
|
((state & $negative_preconds) == ALL_ZERO);
|
|
}
|
|
|
|
State Action::apply_effect(State& state) {
|
|
return (state | $positive_effects) & ~$negative_effects;
|
|
}
|
|
|
|
int distance_to_goal(State from, State to) {
|
|
auto result = from ^ to;
|
|
int count = result.count();
|
|
return count;
|
|
}
|
|
|
|
inline void dump_came_from(std::string msg, std::unordered_map<Action, Action>& came_from, Action& current) {
|
|
fmt::println("{}: {}", msg, current.name);
|
|
|
|
for(auto& [from, to] : came_from) {
|
|
fmt::println("from={}; to={}", from.name, to.name);
|
|
}
|
|
}
|
|
|
|
inline void path_invariant(std::unordered_map<Action, Action>& came_from, Action& current) {
|
|
#if defined(NDEBUG)
|
|
(void)came_from; // disable errors about unused
|
|
(void)current;
|
|
#else
|
|
bool final_found = current == FINAL_ACTION;
|
|
|
|
for(size_t i = 0; i <= came_from.size() && came_from.contains(current); i++) {
|
|
current = came_from.at(current);
|
|
final_found = current == FINAL_ACTION;
|
|
}
|
|
|
|
if(!final_found) {
|
|
dump_came_from("CYCLE DETECTED!", came_from, current);
|
|
dbc::sentinel("AI CYCLE FOUND!");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
Script reconstruct_path(std::unordered_map<Action, Action>& came_from, Action& current) {
|
|
Script total_path{current};
|
|
|
|
path_invariant(came_from, current);
|
|
|
|
for(size_t i = 0; i <= came_from.size() && came_from.contains(current); i++) {
|
|
auto next = came_from.at(current);
|
|
|
|
if(next != FINAL_ACTION) {
|
|
// remove the previous node to avoid cycles and repeated actions
|
|
total_path.push_front(next);
|
|
came_from.erase(current);
|
|
current = next;
|
|
} else {
|
|
// found the terminator, done
|
|
break;
|
|
}
|
|
}
|
|
|
|
return total_path;
|
|
}
|
|
|
|
inline int h(State start, State goal) {
|
|
return distance_to_goal(start, goal);
|
|
}
|
|
|
|
inline int d(State start, State goal) {
|
|
return distance_to_goal(start, goal);
|
|
}
|
|
|
|
using FScorePair = std::pair<int, ActionState>;
|
|
auto FScorePair_cmp = [](const FScorePair& l, const FScorePair& r) {
|
|
return l.first < r.first;
|
|
};
|
|
using FScoreQueue = std::vector<FScorePair>;
|
|
|
|
ActionState find_lowest(std::unordered_map<ActionState, int>& open_set,
|
|
FScoreQueue& f_scores)
|
|
{
|
|
check(!open_set.empty(), "open set can't be empty in find_lowest");
|
|
|
|
for(auto& [score, astate] : f_scores) {
|
|
if(open_set.contains(astate)) {
|
|
return astate;
|
|
}
|
|
}
|
|
|
|
dbc::sentinel("lowest not found!");
|
|
}
|
|
|
|
ActionPlan plan_actions(std::vector<Action>& actions, State start, State goal) {
|
|
std::unordered_map<ActionState, int> open_set;
|
|
std::unordered_map<Action, Action> came_from;
|
|
std::unordered_map<State, int> g_score;
|
|
FScoreQueue f_score;
|
|
std::unordered_map<State, bool> closed_set;
|
|
ActionState current{FINAL_ACTION, start};
|
|
|
|
g_score.insert_or_assign(start, 0);
|
|
f_score.emplace_back(h(start, goal), current);
|
|
std::push_heap(f_score.begin(), f_score.end(), FScorePair_cmp);
|
|
|
|
open_set.insert_or_assign(current, h(start, goal));
|
|
|
|
while(!open_set.empty()) {
|
|
// current := the node in openSet having the lowest fScore[] value
|
|
current = find_lowest(open_set, f_score);
|
|
|
|
if(is_subset(current.state, goal)) {
|
|
return {true,
|
|
reconstruct_path(came_from, current.action)};
|
|
}
|
|
|
|
open_set.erase(current);
|
|
closed_set.insert_or_assign(current.state, true);
|
|
|
|
for(auto& neighbor_action : actions) {
|
|
// calculate the State being current/neighbor
|
|
if(!neighbor_action.can_effect(current.state)) continue;
|
|
|
|
auto neighbor = neighbor_action.apply_effect(current.state);
|
|
if(closed_set.contains(neighbor)) continue;
|
|
|
|
int d_score = d(current.state, neighbor) + neighbor_action.cost;
|
|
|
|
int tentative_g_score = g_score[current.state] + d_score;
|
|
int neighbor_g_score = g_score.contains(neighbor) ? g_score[neighbor] : SCORE_MAX;
|
|
|
|
if(tentative_g_score < neighbor_g_score) {
|
|
came_from.insert_or_assign(neighbor_action, current.action);
|
|
|
|
g_score.insert_or_assign(neighbor, tentative_g_score);
|
|
ActionState neighbor_as{neighbor_action, neighbor};
|
|
|
|
int score = tentative_g_score + h(neighbor, goal);
|
|
f_score.emplace_back(score, neighbor_as);
|
|
std::push_heap(f_score.begin(), f_score.end(), FScorePair_cmp);
|
|
|
|
// this maybe doesn't need score
|
|
open_set.insert_or_assign(neighbor_as, score);
|
|
}
|
|
}
|
|
}
|
|
|
|
return {is_subset(current.state, goal), reconstruct_path(came_from, current.action)};
|
|
}
|
|
}
|
|
|