Exploring raycasters and possibly make a little "doom like" game based on it.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
raycaster/amt/thread.hpp

253 lines
7.1 KiB

#ifndef AMT_THREAD_HPP
#define AMT_THREAD_HPP
#include <cassert>
#include <concepts>
#include <cstddef>
#include <deque>
#include <mutex>
#include <type_traits>
#include <thread>
#include <condition_variable>
#include <atomic>
#include <functional>
namespace amt {
// NOTE: Could implement lock-free queue.
template <typename T>
struct Queue {
using base_type = std::deque<T>;
using value_type = typename base_type::value_type;
using pointer = typename base_type::pointer;
using const_pointer = typename base_type::const_pointer;
using reference = typename base_type::reference;
using const_reference = typename base_type::const_reference;
using iterator = typename base_type::iterator;
using const_iterator = typename base_type::const_iterator;
using reverse_iterator = typename base_type::reverse_iterator;
using const_reverse_iterator = typename base_type::const_reverse_iterator;
using difference_type = typename base_type::difference_type;
using size_type = typename base_type::size_type;
constexpr Queue() noexcept = default;
constexpr Queue(Queue const&) noexcept = delete;
constexpr Queue(Queue &&) noexcept = default;
constexpr Queue& operator=(Queue const&) noexcept = delete;
constexpr Queue& operator=(Queue &&) noexcept = default;
constexpr ~Queue() noexcept = default;
template <typename U>
requires std::same_as<std::decay_t<U>, value_type>
void push(U&& u) {
std::lock_guard m(m_mutex);
m_data.push_back(std::forward<U>(u));
}
template <typename... Args>
void emplace(Args&&... args) {
std::lock_guard m(m_mutex);
m_data.emplace_back(std::forward<Args>(args)...);
}
std::optional<value_type> pop() {
std::lock_guard m(m_mutex);
if (empty_unsafe()) return std::nullopt;
auto el = std::move(m_data.front());
m_data.pop_front();
return std::move(el);
}
auto size() const noexcept -> size_type {
std::lock_guard m(m_mutex);
return m_data.size();
}
auto empty() const noexcept -> bool {
std::lock_guard m(m_mutex);
return m_data.empty();
}
constexpr auto size_unsafe() const noexcept -> size_type { return m_data.size(); }
constexpr auto empty_unsafe() const noexcept -> bool { return m_data.empty(); }
private:
base_type m_data;
mutable std::mutex m_mutex;
};
template <typename Fn>
struct ThreadPool;
template <typename Fn>
struct Worker {
using parent_t = ThreadPool<Fn>*;
using work_t = Fn;
using size_type = std::size_t;
constexpr Worker() noexcept = default;
constexpr Worker(Worker const&) noexcept = default;
constexpr Worker(Worker &&) noexcept = default;
constexpr Worker& operator=(Worker const&) noexcept = default;
constexpr Worker& operator=(Worker &&) noexcept = default;
~Worker() {
stop();
}
void start(parent_t pool, size_type id) {
assert((m_running.load(std::memory_order::acquire) == false) && "Thread is already running");
m_running.store(true);
m_parent.store(pool);
m_id = id;
m_thread = std::thread([this]() {
while (m_running.load(std::memory_order::relaxed)) {
std::unique_lock lk(m_mutex);
m_cv.wait(lk, [this] {
return !m_queue.empty_unsafe() || !m_running.load(std::memory_order::relaxed);
});
auto item = pop_task();
if (!item) {
item = try_steal();
if (!item) continue;
}
process_work(std::move(*item));
}
});
}
void process_work(work_t&& work) const noexcept {
std::invoke(std::move(work));
auto ptr = m_parent.load();
if (ptr) ptr->task_completed();
}
void stop() {
if (!m_running.load()) return;
{
std::lock_guard<std::mutex> lock(m_mutex);
m_running.store(false);
}
m_cv.notify_all();
m_thread.join();
m_parent.store(nullptr);
}
void add(work_t&& work) {
std::lock_guard<std::mutex> lock(m_mutex);
m_queue.push(std::move(work));
m_cv.notify_one();
}
std::optional<work_t> pop_task() noexcept {
return m_queue.pop();
}
std::optional<work_t> try_steal() noexcept {
auto ptr = m_parent.load();
if (ptr) return ptr->try_steal(m_id);
return {};
}
constexpr bool empty() const noexcept { return m_queue.empty_unsafe(); }
constexpr size_type size() const noexcept { return m_queue.size_unsafe(); }
constexpr size_type id() const noexcept { return m_id; }
constexpr bool running() const noexcept { return m_running.load(std::memory_order::relaxed); }
private:
Queue<work_t> m_queue{};
std::thread m_thread;
std::atomic<bool> m_running{false};
std::mutex m_mutex{};
std::condition_variable m_cv{};
std::atomic<parent_t> m_parent{nullptr};
size_type m_id;
};
template <typename Fn>
struct ThreadPool {
using worker_t = Worker<Fn>;
using work_t = typename worker_t::work_t;
using size_type = std::size_t;
constexpr ThreadPool(ThreadPool const&) noexcept = delete;
constexpr ThreadPool(ThreadPool &&) noexcept = default;
constexpr ThreadPool& operator=(ThreadPool const&) noexcept = delete;
constexpr ThreadPool& operator=(ThreadPool &&) noexcept = default;
~ThreadPool() {
stop();
}
ThreadPool(size_type n = std::thread::hardware_concurrency())
: m_workers(std::max(n, size_type{1}))
{
for (auto i = 0ul; i < m_workers.size(); ++i) {
m_workers[i].start(this, i);
}
}
void stop() {
for (auto& w: m_workers) w.stop();
}
void add(Fn&& work) {
m_active_tasks.fetch_add(1, std::memory_order::relaxed);
m_workers[m_last_added].add(std::move(work));
m_last_added = (m_last_added + 1) % m_workers.size();
}
std::optional<work_t> try_steal(size_type id) {
for (auto& w: m_workers) {
if (w.id() == id) continue;
auto item = w.pop_task();
if (item) return item;
}
return {};
}
void task_completed() {
if (m_active_tasks.fetch_sub(1, std::memory_order::release) == 1) {
m_wait_cv.notify_all();
}
}
void wait() {
std::unique_lock lock(m_wait_mutex);
m_wait_cv.wait(lock, [this] {
return m_active_tasks.load(std::memory_order::acquire) == 0;
});
}
private:
std::vector<worker_t> m_workers;
size_type m_last_added{};
std::mutex m_wait_mutex;
std::condition_variable m_wait_cv;
std::atomic<size_t> m_active_tasks{0};
};
using thread_pool_t = ThreadPool<std::function<void()>>;
// WARNING: Do not capture the stack variable if you're defering wait on pool.
// If you want to capture them, either capture them value or do "pool.wait()" at the end of the scope.
template <std::size_t Split, typename Fn>
requires (std::is_invocable_v<Fn, std::size_t>)
constexpr auto parallel_for(thread_pool_t& pool, std::size_t start, std::size_t end, Fn&& body) noexcept {
if (start >= end) return;
auto const size = (end - start);
auto const chunk_size = std::max(size_t{1}, (size + Split - 1) / Split);
auto const num_chunks = (size + chunk_size - 1) / chunk_size;
for (auto chunk = 0ul; chunk < num_chunks; ++chunk) {
auto const chunk_start = std::min(start + (chunk * chunk_size), end);
auto const chunk_end = std::min(chunk_start + (chunk_size), end);
pool.add([chunk_start, chunk_end, body] {
for (auto i = chunk_start; i < chunk_end; ++i) {
std::invoke(body, i);
}
});
}
}
} // nsmespace amt
#endif // AMT_THREAD_HPP