Exploring raycasters and possibly make a little "doom like" game based on it.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
raycaster/amt/raycaster.cpp

418 lines
14 KiB

#include "amt/raycaster.hpp"
#include "amt/texture.hpp"
#include "amt/pixel.hpp"
#include "constants.hpp"
#include "thread.hpp"
#define AMT_LIGHT
using namespace fmt;
#ifdef AMT_LIGHT
static constexpr auto room_brightness = 0.3f; // increse this to increase the room brightness. Higher value means brighter room.
inline static constexpr amt::RGBA dumb_lighting(amt::RGBA pixel, float distance, float distance_from_center) {
auto const dim_pixel = pixel * room_brightness;
if (distance_from_center >= 0) {
auto const min_brightness = 1.f / std::max(distance_from_center, 0.5f); // farther away from the center darker it gets
auto const max_brightness = 1.f; // brighness should not exceed 1
auto const pixel_brightness = std::max(min_brightness, std::min(max_brightness, distance));
auto const yellow_brightness = float(distance_from_center * 60);
amt::RGBA const yellow = amt::HSLA(40, 20, yellow_brightness);
auto temp = (pixel / pixel_brightness).blend<amt::BlendMode::softLight>(yellow);
return temp.brightness() < 0.1f ? dim_pixel : temp;
} else {
return dim_pixel;
}
}
#else
inline static constexpr amt::RGBA dumb_lighting(amt::RGBA pixel, double distance, double distance_from_center) {
(void)distance_from_center;
if(distance < 0.9) return pixel;
return pixel / distance;
}
#endif
Raycaster::Raycaster(sf::RenderWindow& window, Matrix &map, unsigned width, unsigned height) :
view_texture(sf::Vector2u{width, height}),
view_sprite(view_texture),
$width(static_cast<int>(width)),
$height(static_cast<int>(height)),
pixels(height, width),
$window(window),
$map(map),
spriteOrder(textures.NUM_SPRITES),
spriteDistance(textures.NUM_SPRITES),
ZBuffer(width),
$radius(std::min($height, $width) / 2),
$r_sq($radius * $radius)
{
$window.setVerticalSyncEnabled(VSYNC);
view_sprite.setPosition({0, 0});
textures.load_textures();
}
void Raycaster::set_position(int x, int y) {
view_sprite.setPosition({(float)x, (float)y});
}
void Raycaster::position_camera(float player_x, float player_y) {
// x and y start position
posX = player_x;
posY = player_y;
}
void Raycaster::draw_pixel_buffer() {
view_texture.update(pixels.to_raw_buf(), {(unsigned int)$width, (unsigned int)$height}, {0, 0});
// BUG: can I do this once and just update it?
$window.draw(view_sprite);
}
void Raycaster::clear() {
pixels.fill({});
$window.clear();
}
void Raycaster::sprite_casting() {
// sort sprites from far to close
for(int i = 0; i < textures.NUM_SPRITES; i++) {
auto& sprite = textures.get_sprite(i);
spriteOrder[i] = i;
// this is just the distance calculation
spriteDistance[i] = ((posX - sprite.x) *
(posX - sprite.x) +
(posY - sprite.y) *
(posY - sprite.y));
}
sort_sprites(spriteOrder, spriteDistance, textures.NUM_SPRITES);
/*for(int i = 0; i < textures.NUM_SPRITES; i++) {*/
// after sorting the sprites, do the projection
// Be careful about capturing stack variables.
amt::parallel_for<1>(pool, 0, textures.NUM_SPRITES, [this, textureWidth = textures.TEXTURE_WIDTH, textureHeight = textures.TEXTURE_HEIGHT](size_t i){
int sprite_index = spriteOrder[i];
Sprite& sprite_rec = textures.get_sprite(sprite_index);
auto& sprite_texture = textures.get_texture(sprite_rec.texture);
double spriteX = sprite_rec.x - posX;
double spriteY = sprite_rec.y - posY;
//transform sprite with the inverse camera matrix
// [ planeX dirX ] -1 [ dirY -dirX ]
// [ ] = 1/(planeX*dirY-dirX*planeY) * [ ]
// [ planeY dirY ] [ -planeY planeX ]
double invDet = 1.0 / (planeX * dirY - dirX * planeY); // required for correct matrix multiplication
double transformX = invDet * (dirY * spriteX - dirX * spriteY);
//this is actually the depth inside the screen, that what Z is in 3D, the distance of sprite to player, matching sqrt(spriteDistance[i])
double transformY = invDet * (-planeY * spriteX + planeX * spriteY);
int spriteScreenX = int(($width / 2) * (1 + transformX / transformY));
int vMoveScreen = int(sprite_rec.elevation * -1 / transformY);
// calculate the height of the sprite on screen
//using "transformY" instead of the real distance prevents fisheye
int spriteHeight = abs(int($height / transformY)) / sprite_rec.vDiv;
//calculate lowest and highest pixel to fill in current stripe
int drawStartY = -spriteHeight / 2 + $height / 2 + vMoveScreen;
if(drawStartY < 0) drawStartY = 0;
int drawEndY = spriteHeight / 2 + $height / 2 + vMoveScreen;
if(drawEndY >= $height) drawEndY = $height - 1;
// calculate width the the sprite
// same as height of sprite, given that it's square
int spriteWidth = abs(int($height / transformY)) / sprite_rec.uDiv;
int drawStartX = -spriteWidth / 2 + spriteScreenX;
if(drawStartX < 0) drawStartX = 0;
int drawEndX = spriteWidth / 2 + spriteScreenX;
if(drawEndX > $width) drawEndX = $width;
//loop through every vertical stripe of the sprite on screen
for(int stripe = drawStartX; stripe < drawEndX; stripe++) {
int texX = int(256 * (stripe - (-spriteWidth / 2 + spriteScreenX)) * textureWidth / spriteWidth) / 256;
// the conditions in the if are:
// 1) it's in front of the camera plane so you don't see things behind you
// 2) ZBuffer, with perpendicular distance
if (texX < 0) continue;
if(transformY > 0 && transformY < ZBuffer[stripe]) {
for(int y = drawStartY; y < drawEndY; y++) {
//256 and 128 factors to avoid floats
int d = (y - vMoveScreen) * 256 - $height * 128 + spriteHeight * 128;
int texY = ((d * textureHeight) / spriteHeight) / 256;
if ((size_t)texY >= sprite_texture.rows()) continue;
//get current color from the texture
auto color = sprite_texture[texY][texX];
// poor person's transparency, get current color from the texture
if (!(color.to_hex() & 0xffffff00)) continue;
auto dist = get_distance_from_center(stripe, y);
pixels[y][stripe] = dumb_lighting(color, d, dist);
}
}
}
});
}
float Raycaster::get_distance_from_center(int x, int y) const noexcept {
float cx = $width / 2;
float cy = $height / 2;
auto dx = cx - x;
auto dy = cy - y;
return ($r_sq - dx * dx - dy * dy) / $r_sq;
}
void Raycaster::cast_rays() {
// WALL CASTING
/*for(int x = 0; x < $width; x++) {*/
amt::parallel_for<32>(pool, 0, static_cast<std::size_t>($width), [this](size_t x){
double perpWallDist = 0;
// calculate ray position and direction
double cameraX = 2 * x / double($width) - 1; // x-coord in camera space
double rayDirX = dirX + planeX * cameraX;
double rayDirY = dirY + planeY * cameraX;
// which box of the map we're in
int mapX = int(posX);
int mapY = int(posY);
// length of ray from current pos to next x or y-side
double sideDistX;
double sideDistY;
// length of ray from one x or y-side to next x or y-side
double deltaDistX = std::abs(1.0 / rayDirX);
double deltaDistY = std::abs(1.0 / rayDirY);
int stepX = 0;
int stepY = 0;
int hit = 0;
int side = 0;
// calculate step and initial sideDist
if(rayDirX < 0) {
stepX = -1;
sideDistX = (posX - mapX) * deltaDistX;
} else {
stepX = 1;
sideDistX = (mapX + 1.0 - posX) * deltaDistX;
}
if(rayDirY < 0) {
stepY = -1;
sideDistY = (posY - mapY) * deltaDistY;
} else {
stepY = 1;
sideDistY = (mapY + 1.0 - posY) * deltaDistY;
}
// perform DDA
while(hit == 0) {
if(sideDistX < sideDistY) {
sideDistX += deltaDistX;
mapX += stepX;
side = 0;
} else {
sideDistY += deltaDistY;
mapY += stepY;
side = 1;
}
if($map[mapY][mapX] > 0) hit = 1;
}
if(side == 0) {
perpWallDist = (sideDistX - deltaDistX);
} else {
perpWallDist = (sideDistY - deltaDistY);
}
int lineHeight = int($height / perpWallDist);
int drawStart = -lineHeight / 2 + $height / 2 + PITCH;
if(drawStart < 0) drawStart = 0;
int drawEnd = lineHeight / 2 + $height / 2 + PITCH;
if(drawEnd >= $height) drawEnd = $height - 1;
auto &texture = textures.get_texture($map[mapY][mapX] - 1);
// calculate value of wallX
double wallX; // where exactly the wall was hit
if(side == 0) {
wallX = posY + perpWallDist * rayDirY;
} else {
wallX = posX + perpWallDist * rayDirX;
}
wallX -= floor((wallX));
// x coorindate on the texture
int texX = int(wallX * double(textures.TEXTURE_WIDTH));
if(side == 0 && rayDirX > 0) texX = textures.TEXTURE_WIDTH - texX - 1;
if(side == 1 && rayDirY < 0) texX = textures.TEXTURE_WIDTH - texX - 1;
// LODE: an integer-only bresenham or DDA like algorithm could make the texture coordinate stepping faster
// How much to increase the texture coordinate per screen pixel
double step = 1.0 * textures.TEXTURE_HEIGHT / lineHeight;
// Starting texture coordinate
double texPos = (drawStart - PITCH - $height / 2 + lineHeight / 2) * step;
for(int y = drawStart; y < drawEnd; y++) {
int texY = (int)texPos & (textures.TEXTURE_HEIGHT - 1);
texPos += step;
auto dist = get_distance_from_center(x, y);
auto color = dumb_lighting(texture[texY][texX], perpWallDist, dist);
pixels[y][x] = color;
}
// SET THE ZBUFFER FOR THE SPRITE CASTING
ZBuffer[x] = perpWallDist;
});
}
void Raycaster::draw_ceiling_floor() {
/*for(int y = $height / 2 + 1; y < $height; ++y) {*/
auto const h = static_cast<size_t>($height);
amt::parallel_for<32>(pool, h / 2, h, [this, $height=h](size_t y){
const size_t textureWidth = textures.TEXTURE_WIDTH;
const size_t textureHeight = textures.TEXTURE_HEIGHT;
// rayDir for leftmost ray (x=0) and rightmost (x = w)
float rayDirX0 = dirX - planeX;
float rayDirY0 = dirY - planeY;
float rayDirX1 = dirX + planeX;
float rayDirY1 = dirY + planeY;
// current y position compared to the horizon
int p = y - $height / 2;
// vertical position of the camera
// 0.5 will the camera at the center horizon. For a
// different value you need a separate loop for ceiling
// and floor since they're no longer symmetrical.
float posZ = 0.5 * $height;
// horizontal distance from the camera to the floor for the current row
// 0.5 is the z position exactly in the middle between floor and ceiling
// See NOTE in Lode's code for more.
float rowDistance = posZ / p;
// calculate the real world step vector we have to add for each x (parallel to camera plane)
// adding step by step avoids multiplications with a wight in the inner loop
float floorStepX = rowDistance * (rayDirX1 - rayDirX0) / $width;
float floorStepY = rowDistance * (rayDirY1 - rayDirY0) / $width;
// real world coordinates of the leftmost column.
// This will be updated as we step to the right
float floorX = posX + rowDistance * rayDirX0;
float floorY = posY + rowDistance * rayDirY0;
for(int x = 0; x < $width; ++x) {
// the cell coord is simply taken from the int parts of
// floorX and floorY.
int cellX = int(floorX);
int cellY = int(floorY);
// get the texture coordinat from the fractional part
int tx = int(textureWidth * (floorX - cellX)) & (textureWidth - 1);
int ty = int(textureWidth * (floorY - cellY)) & (textureHeight - 1);
floorX += floorStepX;
floorY += floorStepY;
// now get the pixel from the texture
// this uses the previous ty/tx fractional parts of
// floorX cellX to find the texture x/y. How?
#ifdef AMT_LIGHT
// FLOOR
auto dist_floor = get_distance_from_center(x, y);
pixels[y][x] = dumb_lighting(textures.floor[ty][tx], p, dist_floor);
// CEILING
auto dist_ceiling = get_distance_from_center(x, $height - y - 1);
pixels[$height - y - 1][x] = dumb_lighting(textures.ceiling[ty][tx], p, dist_ceiling);
#else
// FLOOR
pixels[y][x] = textures.floor[ty][tx];
// CEILING
pixels[$height - y - 1][x] = textures.ceiling[ty][tx];
#endif
}
});
}
void Raycaster::render() {
draw_ceiling_floor();
// This wait to prevent data-race
pool.wait(); // Try to remove this to see unbelievable performance
cast_rays();
pool.wait(); // Try to remove this too
sprite_casting();
pool.wait();
draw_pixel_buffer();
}
bool Raycaster::empty_space(int new_x, int new_y) {
dbc::check((size_t)new_x < $map.cols(),
format("x={} too wide={}", new_x, $map.cols()));
dbc::check((size_t)new_y < $map.rows(),
format("y={} too high={}", new_y, $map.rows()));
return $map[new_y][new_x] == 0;
}
void Raycaster::sort_sprites(std::vector<int>& order, std::vector<double>& dist, int amount)
{
std::vector<std::pair<double, int>> sprites(amount);
for(int i = 0; i < amount; i++) {
sprites[i].first = dist[i];
sprites[i].second = order[i];
}
std::sort(sprites.begin(), sprites.end());
// restore in reverse order
for(int i = 0; i < amount; i++) {
dist[i] = sprites[amount - i - 1].first;
order[i] = sprites[amount - i - 1].second;
}
}
void Raycaster::run(double speed, int dir) {
double speed_and_dir = speed * dir;
if(empty_space(int(posX + dirX * speed_and_dir), int(posY))) {
posX += dirX * speed_and_dir;
}
if(empty_space(int(posX), int(posY + dirY * speed_and_dir))) {
posY += dirY * speed_and_dir;
}
}
void Raycaster::rotate(double speed, int dir) {
double speed_and_dir = speed * dir;
double oldDirX = dirX;
dirX = dirX * cos(speed_and_dir) - dirY * sin(speed_and_dir);
dirY = oldDirX * sin(speed_and_dir) + dirY * cos(speed_and_dir);
double oldPlaneX = planeX;
planeX = planeX * cos(speed_and_dir) - planeY * sin(speed_and_dir);
planeY = oldPlaneX * sin(speed_and_dir) + planeY * cos(speed_and_dir);
}