Exploring raycasters and possibly make a little "doom like" game based on it.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
raycaster/amt/matrix.hpp

197 lines
5.4 KiB

#pragma once
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <type_traits>
#include <algorithm>
namespace amt {
namespace detail {
[[nodiscard]] constexpr auto cal_index(
std::size_t r,
std::size_t c,
[[maybe_unused]] std::size_t rs,
[[maybe_unused]] std::size_t cs
) -> std::size_t {
return r * cs + c;
}
}
template <typename T>
struct Matrix {
using value_type = T;
using pointer = value_type*;
using const_pointer = value_type const*;
using reference = value_type&;
using const_reference = value_type const&;
using iterator = pointer;
using const_iterator = const_pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using difference_type = std::ptrdiff_t;
using size_type = std::size_t;
template <bool IsConst>
struct View {
using base_type = std::conditional_t<IsConst, const_pointer, pointer>;
base_type data;
size_type r;
size_type rows;
size_type cols;
constexpr reference operator[](size_type c) noexcept requires (!IsConst) {
assert(c < cols && "Out of bound access");
auto const index = detail::cal_index(r, c, rows, cols);
return data[index];
}
constexpr const_reference operator[](size_type c) const noexcept {
assert(c < cols && "Out of bound access");
auto const index = detail::cal_index(r, c, rows, cols);
return data[index];
}
};
constexpr Matrix() noexcept = default;
Matrix(Matrix const& other)
: Matrix(other.rows(), other.cols())
{
std::copy(other.begin(), other.end(), begin());
}
Matrix& operator=(Matrix const& other) {
if (this == &other) return *this;
auto temp = Matrix(other);
swap(temp, *this);
return *this;
}
constexpr Matrix(Matrix && other) noexcept
: m_data(other.m_data)
, m_row(other.m_row)
, m_col(other.m_col)
{
other.m_data = nullptr;
}
constexpr Matrix& operator=(Matrix && other) noexcept {
if (this == &other) return *this;
swap(*this, other);
return *this;
}
~Matrix() {
if (m_data) delete[] m_data;
}
Matrix(size_type row, size_type col)
: m_data(new value_type[row * col])
, m_row(row)
, m_col(col)
{}
Matrix(size_type row, size_type col, value_type def)
: Matrix(row, col)
{
std::fill(begin(), end(), def);
}
Matrix(std::initializer_list<std::initializer_list<value_type>> li)
: m_row(li.size())
{
for (auto const& row: li) {
m_col = std::max(m_col, row.size());
}
auto const size = m_row * m_col;
if (size == 0) return;
m_data = new value_type[size];
std::fill_n(m_data, size, 0);
for (auto r = 0ul; auto const& row: li) {
for (auto c = 0ul; auto const& col: row) {
this->operator()(r, c++) = col;
}
++r;
}
}
constexpr bool empty() const noexcept { return size() == 0; }
constexpr size_type size() const noexcept { return rows() * cols(); }
constexpr size_type rows() const noexcept { return m_row; }
constexpr size_type cols() const noexcept { return m_col; }
constexpr auto data() noexcept -> pointer { return m_data; }
constexpr auto data() const noexcept -> const_pointer { return m_data; }
constexpr iterator begin() noexcept { return m_data; }
constexpr iterator end() noexcept { return m_data + size(); }
constexpr const_iterator begin() const noexcept { return m_data; }
constexpr const_iterator end() const noexcept { return m_data + size(); }
constexpr reverse_iterator rbegin() noexcept { return std::reverse_iterator(end()); }
constexpr reverse_iterator rend() noexcept { return std::reverse_iterator(begin()); }
constexpr const_reverse_iterator rbegin() const noexcept { return std::reverse_iterator(end()); }
constexpr const_reverse_iterator rend() const noexcept { return std::reverse_iterator(begin()); }
constexpr auto operator()(size_type r, size_type c) noexcept -> reference {
auto const index = detail::cal_index(r, c, rows(), cols());
assert(index < size() && "Out of bound access");
return m_data[index];
}
constexpr auto operator()(size_type r, size_type c) const noexcept -> const_reference {
auto const index = detail::cal_index(r, c, rows(), cols());
assert(index < size() && "Out of bound access");
return m_data[index];
}
constexpr auto operator[](size_type r) noexcept -> View<false> {
assert(r < rows() && "Out of bound access");
return { .data = m_data, .r = r, .rows = m_row, .cols = m_col };
}
constexpr auto operator[](size_type r) const noexcept -> View<true> {
assert(r < rows() && "Out of bound access");
return { .data = m_data, .r = r, .rows = m_row, .cols = m_col };
}
friend void swap(Matrix& lhs, Matrix& rhs) noexcept {
using std::swap;
swap(lhs.m_data, rhs.m_data);
swap(lhs.m_row, rhs.m_row);
swap(lhs.m_col, rhs.m_col);
}
private:
pointer m_data{};
size_type m_row{};
size_type m_col{};
};
} // namespace amt
#if 0
#include <format>
namespace std {
template <typename T>
struct formatter<amt::Matrix<T>> {
constexpr auto parse(format_parse_context& ctx) {
return ctx.begin();
}
auto format(amt::Matrix<T> const& m, auto& ctx) const {
std::string s = "[\n";
for (auto r = std::size_t{}; r < m.rows(); ++r) {
for (auto c = std::size_t{}; c < m.cols(); ++c) {
s += std::format("{}, ", m(r, c));
}
s += '\n';
}
s += "]";
return format_to(ctx.out(), "{}", s);
}
};
} // namespace std
#endif