Next step in the refactoring with everything in a different file and running. The bug from the previous commit was due to the pixel buffer making the Raycaster object too large for the stack. If you get __chkstk_ms then you used too much stack.

master
Zed A. Shaw 2 months ago
parent d230b152cf
commit e379bcd5ec
  1. 4
      main.cpp
  2. 6
      meson.build
  3. 405
      raycaster.cpp
  4. 425
      raycaster.hpp

@ -1,6 +1,6 @@
#include "raycaster.hpp"
static const int SCREEN_HEIGHT=960;
static const int SCREEN_HEIGHT=720;
static const int SCREEN_WIDTH=1280;
int main() {
@ -8,7 +8,6 @@ int main() {
Raycaster rayview(window);
/*
using KB = sf::Keyboard;
rayview.load_textures();
@ -38,7 +37,6 @@ int main() {
}
}
*/
return 0;
}

@ -15,6 +15,12 @@ executable('runtests', [
],
dependencies: dependencies + [catch2])
executable('sfmlcaster', [
'dbc.cpp',
'sfmlcaster.cpp'
],
dependencies: dependencies)
executable('zedcaster', [
'dbc.cpp',
'matrix.cpp',

@ -0,0 +1,405 @@
#include "raycaster.hpp"
using namespace fmt;
#define rgba_color(r,g,b,a) (r<<(0*8))|(g<<(1*8))|(b<<(2*8))|(a<<(3*8))
#define gray_color(c) rgba_color(c, c, c, 255)
//parameters for scaling and moving the sprites
#define uDiv 1
#define vDiv 1
inline void RGBA_brightness(RGBA& pixel, double distance) {
pixel.color.r /= distance;
pixel.color.g /= distance;
pixel.color.b /= distance;
}
inline size_t pixcoord(int x, int y) {
return ((y) * RAY_VIEW_WIDTH) + (x);
}
Raycaster::Raycaster(sf::RenderWindow& window) :
$window(window)
{
$window.setVerticalSyncEnabled(true);
view_texture.create(RAY_VIEW_WIDTH, RAY_VIEW_HEIGHT);
view_sprite.setTexture(view_texture);
view_sprite.setPosition(RAY_VIEW_X, 0);
pixels = new RGBA[RAY_VIEW_WIDTH * RAY_VIEW_HEIGHT];
SPRITE = {{4.0, 3.55, 0, 8}};
MAP = {{8,8,8,8,8,8,8,8,8},
{8,0,2,0,0,0,0,0,8},
{8,0,7,0,0,5,6,0,8},
{8,0,0,0,0,0,0,0,8},
{8,8,0,0,0,0,0,8,8},
{8,0,0,1,3,4,0,0,8},
{8,0,0,0,0,0,8,8,8},
{8,0,0,0,0,0,0,0,8},
{8,8,8,8,8,8,8,8,8}
};
TILE_SIZE = RAY_VIEW_HEIGHT / matrix::width(MAP);
// x and y start position
posX = player_x / TILE_SIZE;
posY = player_y / TILE_SIZE;
}
void Raycaster::load_image(std::vector<uint32_t>& texture, const char *filename) {
sf::Image img;
bool good = img.loadFromFile(filename);
dbc::check(good, format("failed to load {}", filename));
uint32_t *pixbuf = (uint32_t *)img.getPixelsPtr();
std::copy_n(pixbuf, texture.size(), texture.begin());
}
void Raycaster::load_textures() {
for(int i = 0; i < NUM_TEXTURES; i++) {
texture[i].resize(TEXTURE_WIDTH * TEXTURE_HEIGHT);
}
load_image(texture[0], "assets/tile16.png");
load_image(texture[1], "assets/tile02.png");
load_image(texture[2], "assets/tile03.png");
load_image(texture[3], "assets/tile32.png");
load_image(texture[4], "assets/tile05.png");
load_image(texture[5], "assets/tile17.png");
load_image(texture[6], "assets/tile10.png");
load_image(texture[7], "assets/tile01.png");
load_image(texture[8], "assets/portal.png");
}
void Raycaster::draw_pixel_buffer() {
view_texture.update((uint8_t *)pixels, RAY_VIEW_WIDTH, RAY_VIEW_HEIGHT, 0, 0);
// BUG: can I do this once and just update it?
$window.draw(view_sprite);
}
void Raycaster::clear() {
std::fill_n((uint32_t *)pixels, RAY_VIEW_WIDTH * RAY_VIEW_HEIGHT, 0);
$window.clear();
}
void Raycaster::cast_rays(Matrix& map) {
int w = RAY_VIEW_WIDTH;
int h = RAY_VIEW_HEIGHT;
double perpWallDist;
// WALL CASTING
for(int x = 0; x < w; x++) {
// calculate ray position and direction
double cameraX = 2 * x / double(w) - 1; // x-coord in camera space
double rayDirX = dirX + planeX * cameraX;
double rayDirY = dirY + planeY * cameraX;
// which box of the map we're in
int mapX = int(posX);
int mapY = int(posY);
// length of ray from current pos to next x or y-side
double sideDistX;
double sideDistY;
// length of ray from one x or y-side to next x or y-side
double deltaDistX = std::abs(1.0 / rayDirX);
double deltaDistY = std::abs(1.0 / rayDirY);
int stepX = 0;
int stepY = 0;
int hit = 0;
int side = 0;
// calculate step and initial sideDist
if(rayDirX < 0) {
stepX = -1;
sideDistX = (posX - mapX) * deltaDistX;
} else {
stepX = 1;
sideDistX = (mapX + 1.0 - posX) * deltaDistX;
}
if(rayDirY < 0) {
stepY = -1;
sideDistY = (posY - mapY) * deltaDistY;
} else {
stepY = 1;
sideDistY = (mapY + 1.0 - posY) * deltaDistY;
}
// perform DDA
while(hit == 0) {
if(sideDistX < sideDistY) {
sideDistX += deltaDistX;
mapX += stepX;
side = 0;
} else {
sideDistY += deltaDistY;
mapY += stepY;
side = 1;
}
if(map[mapY][mapX] > 0) hit = 1;
}
if(side == 0) {
perpWallDist = (sideDistX - deltaDistX);
} else {
perpWallDist = (sideDistY - deltaDistY);
}
int lineHeight = int(h / perpWallDist);
int drawStart = -lineHeight / 2 + h / 2 + PITCH;
if(drawStart < 0) drawStart = 0;
int drawEnd = lineHeight / 2 + h / 2 + PITCH;
if(drawEnd >= h) drawEnd = h - 1;
int texNum = MAP[mapY][mapX] - 1;
// calculate value of wallX
double wallX; // where exactly the wall was hit
if(side == 0) {
wallX = posY + perpWallDist * rayDirY;
} else {
wallX = posX + perpWallDist * rayDirX;
}
wallX -= floor((wallX));
// x coorindate on the texture
int texX = int(wallX * double(TEXTURE_WIDTH));
if(side == 0 && rayDirX > 0) texX = TEXTURE_WIDTH - texX - 1;
if(side == 1 && rayDirY < 0) texX = TEXTURE_WIDTH - texX - 1;
// LODE: an integer-only bresenham or DDA like algorithm could make the texture coordinate stepping faster
// How much to increase the texture coordinate per screen pixel
double step = 1.0 * TEXTURE_HEIGHT / lineHeight;
// Starting texture coordinate
double texPos = (drawStart - PITCH - h / 2 + lineHeight / 2) * step;
for(int y = drawStart; y < drawEnd; y++) {
int texY = (int)texPos & (TEXTURE_HEIGHT - 1);
texPos += step;
RGBA pixel{.out=texture[texNum][TEXTURE_HEIGHT * texY + texX]};
RGBA_brightness(pixel, perpWallDist);
pixels[pixcoord(x, y)] = pixel;
}
// SET THE ZBUFFER FOR THE SPRITE CASTING
ZBuffer[x] = perpWallDist;
}
// SPRITE CASTING
// sort sprites from far to close
for(int i = 0; i < NUM_SPRITES; i++) {
spriteOrder[i] = i;
// this is just the distance calculation
spriteDistance[i] = ((posX - SPRITE[i].x) *
(posX - SPRITE[i].x) +
(posY - SPRITE[i].y) *
(posY - SPRITE[i].y));
}
sort_sprites(spriteOrder, spriteDistance, NUM_SPRITES);
// after sorting the sprites, do the projection
for(int i = 0; i < NUM_SPRITES; i++) {
int sprite_index = spriteOrder[i];
Sprite& sprite_rec = SPRITE[sprite_index];
double spriteX = sprite_rec.x - posX;
double spriteY = sprite_rec.y - posY;
int sprite_texture_number = sprite_rec.texture;
auto sprite_texture = texture[sprite_texture_number];
//transform sprite with the inverse camera matrix
// [ planeX dirX ] -1 [ dirY -dirX ]
// [ ] = 1/(planeX*dirY-dirX*planeY) * [ ]
// [ planeY dirY ] [ -planeY planeX ]
double invDet = 1.0 / (planeX * dirY - dirX * planeY); // required for correct matrix multiplication
double transformX = invDet * (dirY * spriteX - dirX * spriteY);
//this is actually the depth inside the screen, that what Z is in 3D, the distance of sprite to player, matching sqrt(spriteDistance[i])
double transformY = invDet * (-planeY * spriteX + planeX * spriteY);
int spriteScreenX = int((w / 2) * (1 + transformX / transformY));
int vMoveScreen = int(sprite_rec.elevation * -1 / transformY);
// calculate the height of the sprite on screen
//using "transformY" instead of the real distance prevents fisheye
int spriteHeight = abs(int(h / transformY)) / vDiv;
//calculate lowest and highest pixel to fill in current stripe
int drawStartY = -spriteHeight / 2 + h / 2 + vMoveScreen;
if(drawStartY < 0) drawStartY = 0;
int drawEndY = spriteHeight / 2 + h / 2 + vMoveScreen;
if(drawEndY >= h) drawEndY = h - 1;
// calculate width the the sprite
// same as height of sprite, given that it's square
int spriteWidth = abs(int(h / transformY)) / uDiv;
int drawStartX = -spriteWidth / 2 + spriteScreenX;
if(drawStartX < 0) drawStartX = 0;
int drawEndX = spriteWidth / 2 + spriteScreenX;
if(drawEndX > w) drawEndX = w;
//loop through every vertical stripe of the sprite on screen
for(int stripe = drawStartX; stripe < drawEndX; stripe++) {
int texX = int(256 * (stripe - (-spriteWidth / 2 + spriteScreenX)) * TEXTURE_WIDTH / spriteWidth) / 256;
// the conditions in the if are:
// 1) it's in front of the camera plane so you don't see things behind you
// 2) ZBuffer, with perpendicular distance
if(transformY > 0 && transformY < ZBuffer[stripe]) {
for(int y = drawStartY; y < drawEndY; y++) {
//256 and 128 factors to avoid floats
int d = (y - vMoveScreen) * 256 - h * 128 + spriteHeight * 128;
int texY = ((d * TEXTURE_HEIGHT) / spriteHeight) / 256;
//get current color from the texture
uint32_t color = sprite_texture[TEXTURE_WIDTH * texY + texX];
// poor person's transparency, get current color from the texture
if((color & 0x00FFFFFF) != 0) {
RGBA pixel{.out=color};
RGBA_brightness(pixel, perpWallDist);
pixels[pixcoord(stripe, y)] = pixel;
}
}
}
}
}
}
void Raycaster::draw_ceiling_floor() {
int screenHeight = RAY_VIEW_HEIGHT;
int screenWidth = RAY_VIEW_WIDTH;
for(int y = screenHeight / 2 + 1; y < screenHeight; ++y) {
// rayDir for leftmost ray (x=0) and rightmost (x = w)
float rayDirX0 = dirX - planeX;
float rayDirY0 = dirY - planeY;
float rayDirX1 = dirX + planeX;
float rayDirY1 = dirY + planeY;
// current y position compared to the horizon
int p = y - screenHeight / 2;
// vertical position of the camera
// 0.5 will the camera at the center horizon. For a
// different value you need a separate loop for ceiling
// and floor since they're no longer symmetrical.
float posZ = 0.5 * screenHeight;
// horizontal distance from the camera to the floor for the current row
// 0.5 is the z position exactly in the middle between floor and ceiling
// See NOTE in Lode's code for more.
float rowDistance = posZ / p;
// calculate the real world step vector we have to add for each x (parallel to camera plane)
// adding step by step avoids multiplications with a wight in the inner loop
float floorStepX = rowDistance * (rayDirX1 - rayDirX0) / screenWidth;
float floorStepY = rowDistance * (rayDirY1 - rayDirY0) / screenWidth;
// real world coordinates of the leftmost column.
// This will be updated as we step to the right
float floorX = posX + rowDistance * rayDirX0;
float floorY = posY + rowDistance * rayDirY0;
for(int x = 0; x < screenWidth; ++x) {
// the cell coord is simply taken from the int parts of
// floorX and floorY.
int cellX = int(floorX);
int cellY = int(floorY);
// get the texture coordinat from the fractional part
int tx = int(TEXTURE_WIDTH * (floorX - cellX)) & (TEXTURE_WIDTH - 1);
int ty = int(TEXTURE_WIDTH * (floorY - cellY)) & (TEXTURE_HEIGHT - 1);
floorX += floorStepX;
floorY += floorStepY;
// now get the pixel from the texture
uint32_t color;
// this uses the previous ty/tx fractional parts of
// floorX cellX to find the texture x/y. How?
// FLOOR
color = texture[floorTexture][TEXTURE_WIDTH * ty + tx];
pixels[pixcoord(x, y)].out = color;
// CEILING
color = texture[ceilingTexture][TEXTURE_WIDTH * ty + tx];
pixels[pixcoord(x, screenHeight - y - 1)].out = color;
}
}
}
void Raycaster::render() {
draw_ceiling_floor();
cast_rays(MAP);
draw_pixel_buffer();
$window.display();
}
bool Raycaster::empty_space(int new_x, int new_y) {
dbc::check((size_t)new_x < matrix::width(MAP),
format("x={} too wide={}", new_x, matrix::width(MAP)));
dbc::check((size_t)new_y < matrix::height(MAP),
format("y={} too high={}", new_y, matrix::height(MAP)));
return MAP[new_y][new_x] == 0;
}
void Raycaster::sort_sprites(int* order, double* dist, int amount)
{
std::vector<std::pair<double, int>> sprites(amount);
for(int i = 0; i < amount; i++) {
sprites[i].first = dist[i];
sprites[i].second = order[i];
}
std::sort(sprites.begin(), sprites.end());
// restore in reverse order
for(int i = 0; i < amount; i++) {
dist[i] = sprites[amount - i - 1].first;
order[i] = sprites[amount - i - 1].second;
}
}
void Raycaster::move_forward(double moveSpeed) {
if(empty_space(int(posX + dirX * moveSpeed), int(posY))) posX += dirX * moveSpeed;
if(empty_space(int(posX), int(posY + dirY * moveSpeed))) posY += dirY * moveSpeed;
}
void Raycaster::move_backward(double moveSpeed) {
if(empty_space(int(posX - dirX * moveSpeed), int(posY))) posX -= dirX * moveSpeed;
if(empty_space(int(posX), int(posY - dirY * moveSpeed))) posY -= dirY * moveSpeed;
}
void Raycaster::rotate_right(double rotSpeed) {
double oldDirX = dirX;
dirX = dirX * cos(-rotSpeed) - dirY * sin(-rotSpeed);
dirY = oldDirX * sin(-rotSpeed) + dirY * cos(-rotSpeed);
double oldPlaneX = planeX;
planeX = planeX * cos(-rotSpeed) - planeY * sin(-rotSpeed);
planeY = oldPlaneX * sin(-rotSpeed) + planeY * cos(-rotSpeed);
}
void Raycaster::rotate_left(double rotSpeed) {
double oldDirX = dirX;
dirX = dirX * cos(rotSpeed) - dirY * sin(rotSpeed);
dirY = oldDirX * sin(rotSpeed) + dirY * cos(rotSpeed);
double oldPlaneX = planeX;
planeX = planeX * cos(rotSpeed) - planeY * sin(rotSpeed);
planeY = oldPlaneX * sin(rotSpeed) + planeY * cos(rotSpeed);
}

@ -12,13 +12,12 @@
#include "dbc.hpp"
using matrix::Matrix;
using namespace fmt;
#define texWidth 256 // must be power of two
#define texHeight 256 // must be power of two
#define TEXTURE_WIDTH 256 // must be power of two
#define TEXTURE_HEIGHT 256 // must be power of two
#define numSprites 1
#define numTextures 11
#define NUM_SPRITES 1
#define NUM_TEXTURES 11
struct Sprite {
double x;
@ -27,18 +26,11 @@ struct Sprite {
int texture;
};
//parameters for scaling and moving the sprites
#define uDiv 1
#define vDiv 1
#define RAY_VIEW_WIDTH 960
#define RAY_VIEW_HEIGHT 720
#define RAY_VIEW_X (1280 - RAY_VIEW_WIDTH)
#define RAY_VIEW_Y 0
#define rgba_color(r,g,b,a) (r<<(0*8))|(g<<(1*8))|(b<<(2*8))|(a<<(3*8))
#define gray_color(c) rgba_color(c, c, c, 255)
union RGBA {
struct {
uint8_t r;
@ -50,15 +42,9 @@ union RGBA {
uint32_t out;
};
inline void RGBA_brightness(RGBA& pixel, double distance) {
pixel.color.r /= distance;
pixel.color.g /= distance;
pixel.color.b /= distance;
}
struct Raycaster {
std::vector<Sprite> SPRITE;
std::vector<uint32_t> texture[numTextures];
std::vector<uint32_t> texture[NUM_TEXTURES];
Matrix MAP;
int PITCH=0;
// I chose fixed textures for this instead
@ -69,8 +55,8 @@ struct Raycaster {
float player_y = RAY_VIEW_HEIGHT / 2;
// x and y start position
double posX = player_x / TILE_SIZE;
double posY = player_y / TILE_SIZE;
double posX;
double posY;
// initial direction vector
double dirX = -1;
@ -81,10 +67,10 @@ struct Raycaster {
double planeY = 0.66;
std::array<double, RAY_VIEW_WIDTH> ZBuffer;
int spriteOrder[numSprites];
double spriteDistance[numSprites];
RGBA *pixels = nullptr;
RGBA pixels[RAY_VIEW_WIDTH * RAY_VIEW_HEIGHT];
int spriteOrder[NUM_SPRITES];
double spriteDistance[NUM_SPRITES];
sf::Texture view_texture;
sf::Sprite view_sprite;
@ -92,386 +78,23 @@ struct Raycaster {
sf::RenderWindow& $window;
int TILE_SIZE;
Raycaster(sf::RenderWindow& window) :
$window(window)
{
$window.setVerticalSyncEnabled(true);
view_texture.create(RAY_VIEW_WIDTH, RAY_VIEW_HEIGHT);
view_sprite.setTexture(view_texture);
view_sprite.setPosition(RAY_VIEW_X, 0);
SPRITE = {{4.0, 3.55, 0, 8}};
MAP = {{8,8,8,8,8,8,8,8,8},
{8,0,2,0,0,0,0,0,8},
{8,0,7,0,0,5,6,0,8},
{8,0,0,0,0,0,0,0,8},
{8,8,0,0,0,0,0,8,8},
{8,0,0,1,3,4,0,0,8},
{8,0,0,0,0,0,8,8,8},
{8,0,0,0,0,0,0,0,8},
{8,8,8,8,8,8,8,8,8}
};
TILE_SIZE = RAY_VIEW_HEIGHT / matrix::width(MAP);
}
inline size_t pixcoord(int x, int y) {
return ((y) * RAY_VIEW_WIDTH) + (x);
}
void load_image(std::vector<uint32_t>& texture, const char *filename) {
sf::Image img;
bool good = img.loadFromFile(filename);
dbc::check(good, format("failed to load {}", filename));
uint32_t *pixbuf = (uint32_t *)img.getPixelsPtr();
std::copy_n(pixbuf, texture.size(), texture.begin());
}
void load_textures() {
for(int i = 0; i < numTextures; i++) {
texture[i].resize(texWidth * texHeight);
}
load_image(texture[0], "assets/tile16.png");
load_image(texture[1], "assets/tile02.png");
load_image(texture[2], "assets/tile03.png");
load_image(texture[3], "assets/tile32.png");
load_image(texture[4], "assets/tile05.png");
load_image(texture[5], "assets/tile17.png");
load_image(texture[6], "assets/tile10.png");
load_image(texture[7], "assets/tile01.png");
load_image(texture[8], "assets/portal.png");
}
void draw_pixel_buffer() {
view_texture.update((uint8_t *)pixels, RAY_VIEW_WIDTH, RAY_VIEW_HEIGHT, 0, 0);
// BUG: can I do this once and just update it?
$window.draw(view_sprite);
}
void clear() {
std::fill_n((uint32_t *)pixels, RAY_VIEW_WIDTH * RAY_VIEW_HEIGHT, 0);
$window.clear();
}
void cast_rays(Matrix& map) {
int w = RAY_VIEW_WIDTH;
int h = RAY_VIEW_HEIGHT;
double perpWallDist;
// WALL CASTING
for(int x = 0; x < w; x++) {
// calculate ray position and direction
double cameraX = 2 * x / double(w) - 1; // x-coord in camera space
double rayDirX = dirX + planeX * cameraX;
double rayDirY = dirY + planeY * cameraX;
// which box of the map we're in
int mapX = int(posX);
int mapY = int(posY);
// length of ray from current pos to next x or y-side
double sideDistX;
double sideDistY;
// length of ray from one x or y-side to next x or y-side
double deltaDistX = std::abs(1.0 / rayDirX);
double deltaDistY = std::abs(1.0 / rayDirY);
int stepX = 0;
int stepY = 0;
int hit = 0;
int side = 0;
// calculate step and initial sideDist
if(rayDirX < 0) {
stepX = -1;
sideDistX = (posX - mapX) * deltaDistX;
} else {
stepX = 1;
sideDistX = (mapX + 1.0 - posX) * deltaDistX;
}
if(rayDirY < 0) {
stepY = -1;
sideDistY = (posY - mapY) * deltaDistY;
} else {
stepY = 1;
sideDistY = (mapY + 1.0 - posY) * deltaDistY;
}
// perform DDA
while(hit == 0) {
if(sideDistX < sideDistY) {
sideDistX += deltaDistX;
mapX += stepX;
side = 0;
} else {
sideDistY += deltaDistY;
mapY += stepY;
side = 1;
}
if(map[mapY][mapX] > 0) hit = 1;
}
if(side == 0) {
perpWallDist = (sideDistX - deltaDistX);
} else {
perpWallDist = (sideDistY - deltaDistY);
}
int lineHeight = int(h / perpWallDist);
int drawStart = -lineHeight / 2 + h / 2 + PITCH;
if(drawStart < 0) drawStart = 0;
int drawEnd = lineHeight / 2 + h / 2 + PITCH;
if(drawEnd >= h) drawEnd = h - 1;
int texNum = MAP[mapY][mapX] - 1;
// calculate value of wallX
double wallX; // where exactly the wall was hit
if(side == 0) {
wallX = posY + perpWallDist * rayDirY;
} else {
wallX = posX + perpWallDist * rayDirX;
}
wallX -= floor((wallX));
// x coorindate on the texture
int texX = int(wallX * double(texWidth));
if(side == 0 && rayDirX > 0) texX = texWidth - texX - 1;
if(side == 1 && rayDirY < 0) texX = texWidth - texX - 1;
// LODE: an integer-only bresenham or DDA like algorithm could make the texture coordinate stepping faster
// How much to increase the texture coordinate per screen pixel
double step = 1.0 * texHeight / lineHeight;
// Starting texture coordinate
double texPos = (drawStart - PITCH - h / 2 + lineHeight / 2) * step;
for(int y = drawStart; y < drawEnd; y++) {
int texY = (int)texPos & (texHeight - 1);
texPos += step;
RGBA pixel{.out=texture[texNum][texHeight * texY + texX]};
RGBA_brightness(pixel, perpWallDist);
pixels[pixcoord(x, y)] = pixel;
}
// SET THE ZBUFFER FOR THE SPRITE CASTING
ZBuffer[x] = perpWallDist;
}
// SPRITE CASTING
// sort sprites from far to close
for(int i = 0; i < numSprites; i++) {
spriteOrder[i] = i;
// this is just the distance calculation
spriteDistance[i] = ((posX - SPRITE[i].x) *
(posX - SPRITE[i].x) +
(posY - SPRITE[i].y) *
(posY - SPRITE[i].y));
}
sort_sprites(spriteOrder, spriteDistance, numSprites);
// after sorting the sprites, do the projection
for(int i = 0; i < numSprites; i++) {
int sprite_index = spriteOrder[i];
Sprite& sprite_rec = SPRITE[sprite_index];
double spriteX = sprite_rec.x - posX;
double spriteY = sprite_rec.y - posY;
int sprite_texture_number = sprite_rec.texture;
auto sprite_texture = texture[sprite_texture_number];
//transform sprite with the inverse camera matrix
// [ planeX dirX ] -1 [ dirY -dirX ]
// [ ] = 1/(planeX*dirY-dirX*planeY) * [ ]
// [ planeY dirY ] [ -planeY planeX ]
double invDet = 1.0 / (planeX * dirY - dirX * planeY); // required for correct matrix multiplication
double transformX = invDet * (dirY * spriteX - dirX * spriteY);
//this is actually the depth inside the screen, that what Z is in 3D, the distance of sprite to player, matching sqrt(spriteDistance[i])
double transformY = invDet * (-planeY * spriteX + planeX * spriteY);
int spriteScreenX = int((w / 2) * (1 + transformX / transformY));
int vMoveScreen = int(sprite_rec.elevation * -1 / transformY);
// calculate the height of the sprite on screen
//using "transformY" instead of the real distance prevents fisheye
int spriteHeight = abs(int(h / transformY)) / vDiv;
//calculate lowest and highest pixel to fill in current stripe
int drawStartY = -spriteHeight / 2 + h / 2 + vMoveScreen;
if(drawStartY < 0) drawStartY = 0;
int drawEndY = spriteHeight / 2 + h / 2 + vMoveScreen;
if(drawEndY >= h) drawEndY = h - 1;
// calculate width the the sprite
// same as height of sprite, given that it's square
int spriteWidth = abs(int(h / transformY)) / uDiv;
int drawStartX = -spriteWidth / 2 + spriteScreenX;
if(drawStartX < 0) drawStartX = 0;
int drawEndX = spriteWidth / 2 + spriteScreenX;
if(drawEndX > w) drawEndX = w;
//loop through every vertical stripe of the sprite on screen
for(int stripe = drawStartX; stripe < drawEndX; stripe++) {
int texX = int(256 * (stripe - (-spriteWidth / 2 + spriteScreenX)) * texWidth / spriteWidth) / 256;
// the conditions in the if are:
// 1) it's in front of the camera plane so you don't see things behind you
// 2) ZBuffer, with perpendicular distance
if(transformY > 0 && transformY < ZBuffer[stripe]) {
for(int y = drawStartY; y < drawEndY; y++) {
//256 and 128 factors to avoid floats
int d = (y - vMoveScreen) * 256 - h * 128 + spriteHeight * 128;
int texY = ((d * texHeight) / spriteHeight) / 256;
//get current color from the texture
uint32_t color = sprite_texture[texWidth * texY + texX];
// poor person's transparency, get current color from the texture
if((color & 0x00FFFFFF) != 0) {
RGBA pixel{.out=color};
RGBA_brightness(pixel, perpWallDist);
pixels[pixcoord(stripe, y)] = pixel;
}
}
}
}
}
}
void draw_ceiling_floor() {
int screenHeight = RAY_VIEW_HEIGHT;
int screenWidth = RAY_VIEW_WIDTH;
for(int y = screenHeight / 2 + 1; y < screenHeight; ++y) {
// rayDir for leftmost ray (x=0) and rightmost (x = w)
float rayDirX0 = dirX - planeX;
float rayDirY0 = dirY - planeY;
float rayDirX1 = dirX + planeX;
float rayDirY1 = dirY + planeY;
// current y position compared to the horizon
int p = y - screenHeight / 2;
// vertical position of the camera
// 0.5 will the camera at the center horizon. For a
// different value you need a separate loop for ceiling
// and floor since they're no longer symmetrical.
float posZ = 0.5 * screenHeight;
// horizontal distance from the camera to the floor for the current row
// 0.5 is the z position exactly in the middle between floor and ceiling
// See NOTE in Lode's code for more.
float rowDistance = posZ / p;
// calculate the real world step vector we have to add for each x (parallel to camera plane)
// adding step by step avoids multiplications with a wight in the inner loop
float floorStepX = rowDistance * (rayDirX1 - rayDirX0) / screenWidth;
float floorStepY = rowDistance * (rayDirY1 - rayDirY0) / screenWidth;
// real world coordinates of the leftmost column.
// This will be updated as we step to the right
float floorX = posX + rowDistance * rayDirX0;
float floorY = posY + rowDistance * rayDirY0;
for(int x = 0; x < screenWidth; ++x) {
// the cell coord is simply taken from the int parts of
// floorX and floorY.
int cellX = int(floorX);
int cellY = int(floorY);
// get the texture coordinat from the fractional part
int tx = int(texWidth * (floorX - cellX)) & (texWidth - 1);
int ty = int(texWidth * (floorY - cellY)) & (texHeight - 1);
floorX += floorStepX;
floorY += floorStepY;
// now get the pixel from the texture
uint32_t color;
// this uses the previous ty/tx fractional parts of
// floorX cellX to find the texture x/y. How?
// FLOOR
color = texture[floorTexture][texWidth * ty + tx];
pixels[pixcoord(x, y)].out = color;
// CEILING
color = texture[ceilingTexture][texWidth * ty + tx];
pixels[pixcoord(x, screenHeight - y - 1)].out = color;
}
}
}
void render() {
draw_ceiling_floor();
cast_rays(MAP);
draw_pixel_buffer();
$window.display();
}
bool empty_space(int new_x, int new_y) {
dbc::check((size_t)new_x < matrix::width(MAP),
format("x={} too wide={}", new_x, matrix::width(MAP)));
dbc::check((size_t)new_y < matrix::height(MAP),
format("y={} too high={}", new_y, matrix::height(MAP)));
return MAP[new_y][new_x] == 0;
}
void sort_sprites(int* order, double* dist, int amount)
{
std::vector<std::pair<double, int>> sprites(amount);
for(int i = 0; i < amount; i++) {
sprites[i].first = dist[i];
sprites[i].second = order[i];
}
std::sort(sprites.begin(), sprites.end());
// restore in reverse order
for(int i = 0; i < amount; i++) {
dist[i] = sprites[amount - i - 1].first;
order[i] = sprites[amount - i - 1].second;
}
}
void move_forward(double moveSpeed) {
if(empty_space(int(posX + dirX * moveSpeed), int(posY))) posX += dirX * moveSpeed;
if(empty_space(int(posX), int(posY + dirY * moveSpeed))) posY += dirY * moveSpeed;
}
Raycaster(sf::RenderWindow& window);
void move_backward(double moveSpeed) {
if(empty_space(int(posX - dirX * moveSpeed), int(posY))) posX -= dirX * moveSpeed;
if(empty_space(int(posX), int(posY - dirY * moveSpeed))) posY -= dirY * moveSpeed;
}
void load_image(std::vector<uint32_t>& texture, const char *filename);
void load_textures();
void rotate_right(double rotSpeed) {
double oldDirX = dirX;
dirX = dirX * cos(-rotSpeed) - dirY * sin(-rotSpeed);
dirY = oldDirX * sin(-rotSpeed) + dirY * cos(-rotSpeed);
void draw_pixel_buffer();
double oldPlaneX = planeX;
planeX = planeX * cos(-rotSpeed) - planeY * sin(-rotSpeed);
planeY = oldPlaneX * sin(-rotSpeed) + planeY * cos(-rotSpeed);
}
void clear();
void rotate_left(double rotSpeed) {
double oldDirX = dirX;
dirX = dirX * cos(rotSpeed) - dirY * sin(rotSpeed);
dirY = oldDirX * sin(rotSpeed) + dirY * cos(rotSpeed);
void cast_rays(Matrix& map);
double oldPlaneX = planeX;
planeX = planeX * cos(rotSpeed) - planeY * sin(rotSpeed);
planeY = oldPlaneX * sin(rotSpeed) + planeY * cos(rotSpeed);
}
void draw_ceiling_floor();
void render();
bool empty_space(int new_x, int new_y);
void sort_sprites(int* order, double* dist, int amount);
void move_forward(double moveSpeed);
void move_backward(double moveSpeed);
void rotate_right(double rotSpeed);
void rotate_left(double rotSpeed);
};

Loading…
Cancel
Save