|
|
|
@ -106,7 +106,6 @@ namespace ai { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ActionPlan plan_actions(std::vector<Action>& actions, State start, State goal) { |
|
|
|
|
int loop_count = 0; |
|
|
|
|
std::unordered_map<ActionState, int> open_set; |
|
|
|
|
std::unordered_map<Action, Action> came_from; |
|
|
|
|
std::unordered_map<State, int> g_score; |
|
|
|
@ -121,12 +120,10 @@ namespace ai { |
|
|
|
|
open_set.insert_or_assign(current, h(start, goal)); |
|
|
|
|
|
|
|
|
|
while(!open_set.empty()) { |
|
|
|
|
loop_count++; |
|
|
|
|
// current := the node in openSet having the lowest fScore[] value
|
|
|
|
|
current = find_lowest(open_set, f_score); |
|
|
|
|
|
|
|
|
|
if(is_subset(current.state, goal)) { |
|
|
|
|
fmt::println("YES CLOSED COUNT: {}", loop_count); |
|
|
|
|
return {true, |
|
|
|
|
reconstruct_path(came_from, current.action)}; |
|
|
|
|
} |
|
|
|
@ -139,13 +136,7 @@ namespace ai { |
|
|
|
|
if(!neighbor_action.can_effect(current.state)) continue; |
|
|
|
|
|
|
|
|
|
auto neighbor = neighbor_action.apply_effect(current.state); |
|
|
|
|
if(closed_set.contains(neighbor)) { |
|
|
|
|
fmt::println("closed_set: {}, open_set: {}, f_score: {}", |
|
|
|
|
closed_set.size(), open_set.size(), f_score.size()); |
|
|
|
|
continue; |
|
|
|
|
} else { |
|
|
|
|
loop_count++; |
|
|
|
|
} |
|
|
|
|
if(closed_set.contains(neighbor)) continue; |
|
|
|
|
|
|
|
|
|
int d_score = d(current.state, neighbor) + neighbor_action.cost; |
|
|
|
|
|
|
|
|
@ -170,7 +161,6 @@ namespace ai { |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
fmt::println("YES CLOSED COUNT: {}", loop_count); |
|
|
|
|
return {is_subset(current.state, goal), reconstruct_path(came_from, current.action)}; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|