Brought in some of amit's code to study and try out. amt/ has it.

master
Zed A. Shaw 2 months ago
parent 2dfe5417b1
commit 5e63272f24
  1. 67
      amt/main.cpp
  2. 184
      amt/matrix.hpp
  3. 582
      amt/pixel.hpp
  4. 395
      amt/raycaster.cpp
  5. 95
      amt/raycaster.hpp
  6. 7
      meson.build
  7. 74
      tests/amt_matrix.cpp

@ -0,0 +1,67 @@
#include "amt/raycaster.hpp"
#define RAY_VIEW_WIDTH 960
#define RAY_VIEW_HEIGHT 720
#define RAY_VIEW_X (1280 - RAY_VIEW_WIDTH)
#define RAY_VIEW_Y 0
static const int SCREEN_HEIGHT=720;
static const int SCREEN_WIDTH=1280;
using Matrix = amt::Matrix<int>;
Matrix MAP{
{8,8,8,8,8,8,8,8,8},
{8,0,2,0,0,0,0,0,8},
{8,0,7,0,0,5,6,0,8},
{8,0,0,0,0,0,0,0,8},
{8,8,0,0,0,0,0,8,8},
{8,0,0,1,3,4,0,0,8},
{8,0,0,0,0,0,8,8,8},
{8,0,0,0,0,0,0,0,8},
{8,8,8,8,8,8,8,8,8}
};
int main() {
using KB = sf::Keyboard;
sf::RenderWindow window(sf::VideoMode(SCREEN_WIDTH, SCREEN_HEIGHT), "Zed's Ray Caster Game Thing");
//ZED this should set with a function
float player_x = MAP.cols() / 2;
float player_y = MAP.rows() / 2;
Raycaster rayview(window, MAP, RAY_VIEW_WIDTH, RAY_VIEW_HEIGHT);
rayview.set_position(RAY_VIEW_X, RAY_VIEW_Y);
rayview.position_camera(player_x, player_y);
double moveSpeed = 0.1;
double rotSpeed = 0.1;
while(window.isOpen()) {
rayview.render();
// DRAW GUI
window.display();
if(KB::isKeyPressed(KB::W)) {
rayview.run(moveSpeed, 1);
} else if(KB::isKeyPressed(KB::S)) {
rayview.run(moveSpeed, -1);
}
if(KB::isKeyPressed(KB::D)) {
rayview.rotate(rotSpeed, -1);
} else if(KB::isKeyPressed(KB::A)) {
rayview.rotate(rotSpeed, 1);
}
sf::Event event;
while(window.pollEvent(event)) {
if(event.type == sf::Event::Closed) {
window.close();
}
}
}
return 0;
}

@ -0,0 +1,184 @@
#pragma once
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <type_traits>
#include <algorithm>
namespace amt {
template <typename T>
struct Matrix {
using value_type = T;
using pointer = value_type*;
using const_pointer = value_type const*;
using reference = value_type&;
using const_reference = value_type const&;
using iterator = pointer;
using const_iterator = const_pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using difference_type = std::ptrdiff_t;
using size_type = std::size_t;
template <bool IsConst>
struct View {
using base_type = std::conditional_t<IsConst, const_pointer, pointer>;
base_type data;
size_type size;
constexpr reference operator[](size_type k) noexcept requires (!IsConst) {
assert(k < size && "Out of bound access");
return data[k];
}
constexpr const_reference operator[](size_type k) const noexcept {
assert(k < size && "Out of bound access");
return data[k];
}
};
constexpr Matrix() noexcept = default;
Matrix(Matrix const& other)
: Matrix(other.rows(), other.cols())
{
std::copy(other.begin(), other.end(), begin());
}
Matrix& operator=(Matrix const& other) {
if (this == &other) return *this;
auto temp = Matrix(other);
swap(temp, *this);
return *this;
}
constexpr Matrix(Matrix && other) noexcept
: m_data(other.m_data)
, m_row(other.m_row)
, m_col(other.m_col)
{
other.m_data = nullptr;
}
constexpr Matrix& operator=(Matrix && other) noexcept {
if (this == &other) return *this;
swap(*this, other);
return *this;
}
~Matrix() {
if (m_data) delete[] m_data;
}
Matrix(size_type row, size_type col)
: m_data(new value_type[row * col])
, m_row(row)
, m_col(col)
{}
Matrix(size_type row, size_type col, value_type def)
: Matrix(row, col)
{
std::fill(begin(), end(), def);
}
Matrix(std::initializer_list<std::initializer_list<value_type>> li)
: m_row(li.size())
{
for (auto const& row: li) {
m_col = std::max(m_col, row.size());
}
auto const size = m_row * m_col;
if (size == 0) return;
m_data = new value_type[size];
std::fill_n(m_data, size, 0);
for (auto r = 0ul; auto const& row: li) {
for (auto c = 0ul; auto const& col: row) {
this->operator()(r, c++) = col;
}
++r;
}
}
constexpr bool empty() const noexcept { return size() == 0; }
constexpr size_type size() const noexcept { return rows() * cols(); }
constexpr size_type rows() const noexcept { return m_row; }
constexpr size_type cols() const noexcept { return m_col; }
constexpr auto data() noexcept -> pointer { return m_data; }
constexpr auto data() const noexcept -> const_pointer { return m_data; }
constexpr iterator begin() noexcept { return m_data; }
constexpr iterator end() noexcept { return m_data + size(); }
constexpr const_iterator begin() const noexcept { return m_data; }
constexpr const_iterator end() const noexcept { return m_data + size(); }
constexpr reverse_iterator rbegin() noexcept { return std::reverse_iterator(end()); }
constexpr reverse_iterator rend() noexcept { return std::reverse_iterator(begin()); }
constexpr const_reverse_iterator rbegin() const noexcept { return std::reverse_iterator(end()); }
constexpr const_reverse_iterator rend() const noexcept { return std::reverse_iterator(begin()); }
constexpr auto operator()(size_type r, size_type c) noexcept -> reference {
auto const index = r * m_col + c; // column-major;
assert(index < size() && "Out of bound access");
return m_data[index];
}
constexpr auto operator()(size_type r, size_type c) const noexcept -> const_reference {
auto const index = r * m_col + c; // column-major;
assert(index < size() && "Out of bound access");
return m_data[index];
}
constexpr auto operator[](size_type r) noexcept -> View<false> {
auto const base = r * m_col;
assert(r < rows() && "Out of bound access");
return { .data = m_data + base, .size = m_col };
}
constexpr auto operator[](size_type r) const noexcept -> View<true> {
auto const base = r * m_col;
assert(r < rows() && "Out of bound access");
return { .data = m_data + base, .size = m_col };
}
friend void swap(Matrix& lhs, Matrix& rhs) noexcept {
using std::swap;
swap(lhs.m_data, rhs.m_data);
swap(lhs.m_row, rhs.m_row);
swap(lhs.m_col, rhs.m_col);
}
private:
pointer m_data;
size_type m_row{};
size_type m_col{};
};
} // namespace amt
#if 0
#include <format>
namespace std {
template <typename T>
struct formatter<amt::Matrix<T>> {
constexpr auto parse(format_parse_context& ctx) {
return ctx.begin();
}
auto format(amt::Matrix<T> const& m, auto& ctx) const {
std::string s = "[\n";
for (auto r = std::size_t{}; r < m.rows(); ++r) {
for (auto c = std::size_t{}; c < m.cols(); ++c) {
s += std::format("{}, ", m(r, c));
}
s += '\n';
}
s += "]";
return format_to(ctx.out(), "{}", s);
}
};
} // namespace std
#endif

@ -0,0 +1,582 @@
#ifndef AMT_PIXEL_HPP
#define AMT_PIXEL_HPP
#include "matrix.hpp"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <stdexcept>
namespace amt {
enum class PixelFormat {
rgba,
abgr,
rgb ,
bgr ,
ga , // gray scale and alpha
ag , // alpha and gray scale
g // gray scale
};
inline static constexpr auto get_pixel_format_from_channel(std::size_t c, bool little_endian = false) -> PixelFormat {
switch (c) {
case 1: return PixelFormat::g;
case 2: return little_endian ? PixelFormat::ag : PixelFormat::ga;
case 3: return little_endian ? PixelFormat::bgr : PixelFormat::rgb;
case 4: return little_endian ? PixelFormat::abgr : PixelFormat::abgr;
}
throw std::runtime_error(std::string("get_pixel_format_from_channel: unknown channel ") + std::to_string(c));
}
namespace detail {
static constexpr auto compare_float(float l, float r) noexcept -> bool {
return std::abs(l - r) < std::numeric_limits<float>::epsilon();
}
} // namespace detail
enum class BlendMode {
normal,
multiply,
screen,
overlay,
darken,
lighten,
colorDodge,
colorBurn,
hardLight,
softLight,
difference,
exclusion
};
struct RGBA {
using pixel_t = std::uint8_t;
pixel_t r{}; // 0-255
pixel_t g{}; // 0-255
pixel_t b{}; // 0-255
pixel_t a{}; // 0-255
constexpr RGBA() noexcept = default;
constexpr RGBA(RGBA const&) noexcept = default;
constexpr RGBA(RGBA &&) noexcept = default;
constexpr RGBA& operator=(RGBA const&) noexcept = default;
constexpr RGBA& operator=(RGBA &&) noexcept = default;
constexpr ~RGBA() noexcept = default;
constexpr RGBA(pixel_t r, pixel_t g, pixel_t b, pixel_t a = 0xff) noexcept
: r(r)
, g(g)
, b(b)
, a(a)
{}
constexpr RGBA(pixel_t color, pixel_t a = 0xff) noexcept
: RGBA(color, color, color, a)
{}
// NOTE: RRGGBBAA
constexpr static auto from_hex(std::uint32_t color) noexcept -> RGBA {
return RGBA(
((color >> (8 * 3)) & 0xff),
((color >> (8 * 2)) & 0xff),
((color >> (8 * 1)) & 0xff),
((color >> (8 * 0)) & 0xff)
);
}
// NOTE: RRGGBBAA
constexpr auto to_hex() const noexcept -> std::uint32_t {
auto r = static_cast<std::uint32_t>(this->r);
auto b = static_cast<std::uint32_t>(this->b);
auto g = static_cast<std::uint32_t>(this->g);
auto a = static_cast<std::uint32_t>(this->a);
return (r << (8 * 3)) | (g << (8 * 2)) | (b << (8 * 1)) | (a << (8 * 0));
}
constexpr auto blend(RGBA color, BlendMode mode) const noexcept -> RGBA {
auto ab = normalize(a);
auto as = normalize(color.a);
// αs x 1 + αb x (1 – αs)
auto alpha = to_pixel(as + ab * (1 - as));
auto nr = blend_helper(normalize(r), normalize(color.r), normalize(a), mode);
auto ng = blend_helper(normalize(g), normalize(color.g), normalize(a), mode);
auto nb = blend_helper(normalize(b), normalize(color.b), normalize(a), mode);
return RGBA(
to_pixel(nr),
to_pixel(ng),
to_pixel(nb),
alpha
);
}
private:
static constexpr auto normalize(pixel_t p) noexcept -> float {
return float(p) / 255;
}
static constexpr auto to_pixel(float p) noexcept -> pixel_t {
return static_cast<pixel_t>(std::clamp(p, 0.f, 1.f) * 255);
}
static constexpr auto apply_op(pixel_t l, pixel_t r, auto&& fn) noexcept -> pixel_t {
return RGBA::to_pixel(fn(RGBA::normalize(l), RGBA::normalize(r)));
}
static constexpr auto blend_helper(float bg, float fg, float alpha, BlendMode mode) noexcept -> float {
constexpr auto mix_helper = [](float s, float b, float a) -> float {
// (1 - αb) x Cs + αb x B(Cb, Cs)
return (1 - a) * s + a * b;
};
switch (mode) {
case BlendMode::normal: return mix_helper(bg, fg, alpha);
case BlendMode::multiply: {
return mix_helper(bg, bg * fg, alpha);
}
case BlendMode::screen: {
constexpr auto fn = [](float b, float s) -> float {
// Cb + Cs -(Cb x Cs)
return b + s - (b * s);
};
auto bf = fn(bg, fg);
return mix_helper(bg, bf, alpha);
}
case BlendMode::overlay: {
// HardLight(Cs, Cb)
auto hl = blend_helper(bg, fg, alpha, BlendMode::hardLight);
return mix_helper(bg, hl, alpha);
}
case BlendMode::darken: return mix_helper(bg, std::min(bg, fg), alpha);
case BlendMode::lighten: return mix_helper(bg, std::max(bg, fg), alpha);
case BlendMode::colorDodge: {
constexpr auto fn = [](float b, float s) -> float {
if (b == 0) return 0;
if (s == 255) return 255;
return std::min(1.f, b / (1.f - s));
};
auto bf = fn(bg, fg);
return mix_helper(bg, bf, alpha);
}
case BlendMode::colorBurn: {
constexpr auto fn = [](float b, float s) -> float {
if (b == 255) return 255;
if (s == 0) return 0;
return 1.f - std::min(1.f, (1.f - b) / s);
};
auto bf = fn(bg, fg);
return mix_helper(bg, bf, alpha);
}
case BlendMode::hardLight: {
constexpr auto fn = [](float b, float s, float a) -> float {
if (s <= 0.5f) {
return RGBA::blend_helper(b, 2.f * s, a, BlendMode::multiply);
} else {
return RGBA::blend_helper(b, 2.f * s - 1.f, a, BlendMode::screen);
}
};
auto bf = fn(bg, fg, alpha);
return mix_helper(bg, bf, alpha);
}
case BlendMode::softLight: {
constexpr auto fn = [](float b, float s) -> float {
if (s <= 0.5f) {
// B(Cb, Cs) = Cb - (1 - 2 x Cs) x Cb x (1 - Cb)
return b - (1.f - 2.f * s) * b * (1 - b);
} else {
float d{};
if (b <= 0.5f) {
// D(Cb) = ((16 * Cb - 12) x Cb + 4) x Cb
d = ((16 * b - 12) * b + 4) * b;
} else {
// D(Cb) = sqrt(Cb)
d = std::sqrt(b);
}
// B(Cb, Cs) = Cb + (2 x Cs - 1) x (D(Cb) - Cb)
return b + (2 * s - 1) * (d - b);
}
};
auto bf = fn(bg, fg);
return mix_helper(bg, bf, alpha);
}
case BlendMode::difference: {
// B(Cb, Cs) = | Cb - Cs |
return mix_helper(bg, (bg > fg ? (bg - fg) : (fg - bg)), alpha);
}
case BlendMode::exclusion: {
constexpr auto fn = [](float b, float s) -> float {
// B(Cb, Cs) = Cb + Cs - 2 x Cb x Cs
return b + s - 2 * b * s;
};
auto bf = fn(bg, fg);
return mix_helper(bg, bf, alpha);
}
}
}
};
struct HSLA {
using pixel_t = float;
pixel_t h{}; // hue: 0-360
pixel_t s{}; // saturation: 0-100%
pixel_t l{}; // lightness: 0-100%
pixel_t a{}; // alpha: 0-100%
constexpr HSLA() noexcept = default;
constexpr HSLA(HSLA const&) noexcept = default;
constexpr HSLA(HSLA &&) noexcept = default;
constexpr HSLA& operator=(HSLA const&) noexcept = default;
constexpr HSLA& operator=(HSLA &&) noexcept = default;
constexpr ~HSLA() noexcept = default;
constexpr HSLA(pixel_t h, pixel_t s, pixel_t l, pixel_t a = 100) noexcept
: h(h)
, s(s)
, l(l)
, a(a)
{}
constexpr HSLA(RGBA color) noexcept {
auto tr = float(color.r) / 255;
auto tg = float(color.g) / 255;
auto tb = float(color.b) / 255;
auto ta = float(color.a) / 255;
auto min = std::min({tr, tg, tb});
auto max = std::max({tr, tg, tb});
auto c = max - min;
float hue = 0;
float s = 0;
auto l = (max + min) / 2;
if (!detail::compare_float(c, 0)) {
auto temp_max = std::max({color.r, color.g, color.b});
if (temp_max == color.r) {
auto seg = (tg - tb) / c;
auto shift = (seg < 0 ? 360.f : 0.f) / 60.f;
hue = seg + shift;
} else if (temp_max == color.g) {
auto seg = (tb - tr) / c;
auto shift = 120.f / 60.f;
hue = seg + shift;
} else {
auto seg = (tr - tg) / c;
auto shift = 240.f / 60.f;
hue = seg + shift;
}
s = c / (1 - std::abs(2 * l - 1));
}
hue = hue * 60.f + 360.f;
auto q = static_cast<float>(static_cast<int>(hue / 360.f));
hue -= q * 360.f;
this->h = hue;
this->s = s * 100.f;
this->l = l * 100.f;
this->a = ta * 100.f;
}
constexpr operator RGBA() const noexcept {
auto th = std::clamp(h, 0.f, 360.f) / 360;
auto ts = std::clamp(s, 0.f, 100.f) / 100;
auto tl = std::clamp(l, 0.f, 100.f) / 100;
auto ta = std::clamp(a, 0.f, 100.f) / 100;
if (detail::compare_float(ts, 0)) return RGBA(to_int(tl), to_int(ta));
float const q = tl < 0.5 ? tl * (1 + ts) : tl + ts - tl * ts;
float const p = 2 * tl - q;
return RGBA(
to_int(convert_hue(p, q, th + 1.f / 3)),
to_int(convert_hue(p, q, th)),
to_int(convert_hue(p, q, th - 1.f / 3)),
to_int(ta)
);
}
constexpr auto blend(HSLA color, BlendMode mode) const noexcept -> HSLA {
auto lhs = RGBA(*this);
auto rhs = RGBA(color);
return HSLA(lhs.blend(rhs, mode));
}
private:
static constexpr auto to_int(float a, float max = 1) noexcept -> std::uint8_t {
return static_cast<std::uint8_t>((a / max) * 255);
}
static constexpr auto convert_hue(float p, float q, float t) noexcept -> float {
if (t < 0) t += 1;
if (t > 1) t -= 1;
if (t * 6 < 1) return p + (q - p) * 6 * t;
if (t * 2 < 1) return q;
if (t * 3 < 2) return p + (q - p) * (2.f / 3 - t) * 6;
return p;
}
};
namespace detail {
template <PixelFormat F>
inline static constexpr auto parse_pixel_helper(RGBA color, std::uint8_t* out_ptr) noexcept {
if constexpr (F == PixelFormat::rgba) {
out_ptr[0] = color.r;
out_ptr[1] = color.g;
out_ptr[2] = color.b;
out_ptr[3] = color.a;
} else if constexpr (F == PixelFormat::abgr) {
out_ptr[0] = color.a;
out_ptr[1] = color.b;
out_ptr[2] = color.g;
out_ptr[3] = color.r;
} else if constexpr (F == PixelFormat::rgb) {
out_ptr[0] = color.r;
out_ptr[1] = color.g;
out_ptr[2] = color.b;
} else if constexpr (F == PixelFormat::bgr) {
out_ptr[0] = color.b;
out_ptr[1] = color.g;
out_ptr[2] = color.r;
} else if constexpr (F == PixelFormat::ga) {
out_ptr[0] = color.r;
out_ptr[1] = color.a;
} else if constexpr (F == PixelFormat::ag) {
out_ptr[0] = color.a;
out_ptr[1] = color.r;
} else {
out_ptr[0] = color.r;
}
}
template <PixelFormat F>
inline static constexpr auto parse_pixel_helper(std::uint8_t const* in_ptr) noexcept -> RGBA {
if constexpr (F == PixelFormat::rgba) {
return {
in_ptr[0],
in_ptr[1],
in_ptr[2],
in_ptr[3]
};
} else if constexpr (F == PixelFormat::abgr) {
return {
in_ptr[3],
in_ptr[2],
in_ptr[1],
in_ptr[0]
};
} else if constexpr (F == PixelFormat::rgb) {
return {
in_ptr[0],
in_ptr[1],
in_ptr[2],
0xff
};
} else if constexpr (F == PixelFormat::bgr) {
return {
in_ptr[2],
in_ptr[1],
in_ptr[0],
0xff
};
} else if constexpr (F == PixelFormat::ga) {
return {
in_ptr[0],
in_ptr[1],
};
} else if constexpr (F == PixelFormat::ag) {
return {
in_ptr[1],
in_ptr[0],
};
} else {
return { in_ptr[0], 0xff };
}
}
} // namespace detail
inline static constexpr auto get_pixel_format_channel(PixelFormat format) noexcept -> std::size_t {
switch (format) {
case PixelFormat::rgba: case PixelFormat::abgr: return 4u;
case PixelFormat::rgb: case PixelFormat::bgr: return 3u;
case PixelFormat::ga: case PixelFormat::ag: return 2u;
case PixelFormat::g: return 1u;
}
assert(false && "unreachable");
}
struct PixelBuf {
private:
public:
using value_type = RGBA;
using base_type = Matrix<value_type>;
using pointer = typename base_type::pointer;
using const_pointer = typename base_type::const_pointer;
using reference = typename base_type::reference;
using const_reference = typename base_type::const_reference;
using iterator = typename base_type::iterator;
using const_iterator = typename base_type::const_iterator;
using reverse_iterator = typename base_type::reverse_iterator;
using const_reverse_iterator = typename base_type::const_reverse_iterator;
using difference_type = typename base_type::difference_type;
using size_type = typename base_type::size_type;
PixelBuf(size_type r, size_type c)
: m_data(r, c)
{}
PixelBuf(size_type r, size_type c, RGBA color)
: m_data(r, c, color)
{}
PixelBuf(std::uint8_t const* in, size_type r, size_type c, PixelFormat format = PixelFormat::rgba)
: PixelBuf(r, c)
{
assert(in != nullptr);
switch (format) {
case PixelFormat::rgba: from_helper<PixelFormat::rgba>(in, data(), size()); break;
case PixelFormat::abgr: from_helper<PixelFormat::abgr>(in, data(), size()); break;
case PixelFormat::rgb: from_helper<PixelFormat::rgb >(in, data(), size()); break;
case PixelFormat::bgr: from_helper<PixelFormat::bgr >(in, data(), size()); break;
case PixelFormat::ga: from_helper<PixelFormat::ga >(in, data(), size()); break;
case PixelFormat::ag: from_helper<PixelFormat::ag >(in, data(), size()); break;
case PixelFormat::g: from_helper<PixelFormat::g >(in, data(), size()); break;
}
}
PixelBuf(PixelBuf const&) = default;
PixelBuf(PixelBuf &&) noexcept = default;
PixelBuf& operator=(PixelBuf const&) = default;
PixelBuf& operator=(PixelBuf &&) noexcept = default;
~PixelBuf() = default;
constexpr auto size() const noexcept -> size_type { return m_data.size(); }
constexpr auto rows() const noexcept -> size_type { return m_data.rows(); }
constexpr auto cols() const noexcept -> size_type { return m_data.cols(); }
constexpr auto data() noexcept -> pointer { return m_data.data(); }
constexpr auto data() const noexcept -> const_pointer { return m_data.data(); }
auto to_raw_buf() noexcept -> std::uint8_t* { return reinterpret_cast<std::uint8_t*>(data()); }
auto to_raw_buf() const noexcept -> std::uint8_t const* { return reinterpret_cast<std::uint8_t const*>(data()); }
constexpr auto raw_buf_size() const noexcept { return size() * sizeof(RGBA); }
constexpr auto begin() noexcept -> iterator { return m_data.begin(); }
constexpr auto end() noexcept -> iterator { return m_data.end(); }
constexpr auto begin() const noexcept -> const_iterator { return m_data.begin(); }
constexpr auto end() const noexcept -> const_iterator { return m_data.end(); }
constexpr auto rbegin() noexcept -> reverse_iterator { return m_data.rbegin(); }
constexpr auto rend() noexcept -> reverse_iterator { return m_data.rend(); }
constexpr auto rbegin() const noexcept -> const_reverse_iterator { return m_data.rbegin(); }
constexpr auto rend() const noexcept -> const_reverse_iterator { return m_data.rend(); }
constexpr auto operator[](size_type r) noexcept { return m_data[r]; }
constexpr auto operator[](size_type r) const noexcept { return m_data[r]; }
constexpr auto operator()(size_type r, size_type c) noexcept -> reference { return m_data(r, c); }
constexpr auto operator()(size_type r, size_type c) const noexcept -> const_reference { return m_data(r, c); }
constexpr auto fill(RGBA color) noexcept -> void {
std::fill(begin(), end(), color);
}
constexpr auto copy_to(std::uint8_t* out, PixelFormat format = PixelFormat::rgba) const noexcept {
assert(out != nullptr);
switch (format) {
case PixelFormat::rgba: copy_to_helper<PixelFormat::rgba>(data(), out, size());return;
case PixelFormat::abgr: copy_to_helper<PixelFormat::abgr>(data(), out, size());return;
case PixelFormat::rgb: copy_to_helper<PixelFormat::rgb >(data(), out, size());return;
case PixelFormat::bgr: copy_to_helper<PixelFormat::bgr >(data(), out, size());return;
case PixelFormat::ga: copy_to_helper<PixelFormat::ga >(data(), out, size());return;
case PixelFormat::ag: copy_to_helper<PixelFormat::ag >(data(), out, size());return;
case PixelFormat::g: copy_to_helper<PixelFormat::g >(data(), out, size());return;
}
assert(false && "unreachable");
}
private:
template <PixelFormat F>
constexpr auto copy_to_helper(const_pointer in, std::uint8_t* out, size_type size) const noexcept -> void {
constexpr auto channels = get_pixel_format_channel(F);
for (auto i = size_type{}; i < size; ++i) {
detail::parse_pixel_helper<F>(in[i], out + i * channels);
}
}
template <PixelFormat F>
constexpr auto from_helper(std::uint8_t const* in, pointer out, size_type size) const noexcept -> void {
constexpr auto channels = get_pixel_format_channel(F);
for (auto i = size_type{}; i < size; ++i) {
out[i] = detail::parse_pixel_helper<F>(in + i * channels);
}
}
private:
base_type m_data;
};
} // namespace amt
#include <format>
namespace std {
template <>
struct formatter<amt::RGBA> {
constexpr auto parse(format_parse_context& ctx) {
return ctx.begin();
}
auto format(amt::RGBA const& color, auto& ctx) const {
return format_to(ctx.out(), "rgba({}, {}, {}, {})", color.r, color.g, color.b, color.a);
}
};
template <>
struct formatter<amt::HSLA> {
constexpr auto parse(format_parse_context& ctx) {
return ctx.begin();
}
auto format(amt::HSLA const& color, auto& ctx) const {
return format_to(ctx.out(), "hsla({:.1f}deg, {:.1f}%, {:.1f}%, {:.1f}%)", color.h, color.s, color.l, color.a);
}
};
template <>
struct formatter<amt::PixelBuf> {
bool hsla = false;
constexpr auto parse(format_parse_context& ctx) {
auto it = ctx.begin();
while (it != ctx.end() && *it != '}') {
if (*it == 'h') hsla = true;
++it;
}
return it;
}
auto format(amt::PixelBuf const& buf, auto& ctx) const {
std::string s = "[\n";
for (auto r = std::size_t{}; r < buf.rows(); ++r) {
for (auto c = std::size_t{}; c < buf.cols(); ++c) {
auto color = buf(r, c);
if (hsla) s += std::format("{}, ", amt::HSLA(color));
else s += std::format("{}, ", color);
}
s += '\n';
}
s += "]";
return format_to(ctx.out(), "{}", s);
}
};
} // namespace std
#endif // AMT_PIXEL_HPP

@ -0,0 +1,395 @@
#include "amt/raycaster.hpp"
using namespace fmt;
using std::make_unique;
#define rgba_color(r,g,b,a) (r<<(0*8))|(g<<(1*8))|(b<<(2*8))|(a<<(3*8))
#define gray_color(c) rgba_color(c, c, c, 255)
std::vector<uint32_t> TexturePack::load_image(const char *filename) {
std::vector<uint32_t> texture(TEXTURE_WIDTH * TEXTURE_HEIGHT);
sf::Image img;
bool good = img.loadFromFile(filename);
dbc::check(good, format("failed to load {}", filename));
uint32_t *pixbuf = (uint32_t *)img.getPixelsPtr();
std::copy_n(pixbuf, texture.size(), texture.begin());
return texture;
}
void TexturePack::load_textures() {
images.emplace_back(load_image("assets/tile16.png"));
images.emplace_back(load_image("assets/tile02.png"));
images.emplace_back(load_image("assets/tile03.png"));
images.emplace_back(load_image("assets/tile32.png"));
images.emplace_back(load_image("assets/tile05.png"));
images.emplace_back(load_image("assets/tile17.png"));
images.emplace_back(load_image("assets/tile10.png"));
images.emplace_back(load_image("assets/tile01.png"));
images.emplace_back(load_image("assets/portal.png"));
}
std::vector<uint32_t>& TexturePack::get(size_t num) {
return images[num];
}
Sprite &TexturePack::get_sprite(size_t sprite_num) {
return SPRITE[sprite_num];
}
Raycaster::Raycaster(sf::RenderWindow& window, Matrix &map, int width, int height) :
$width(width), $height(height),
$window(window),
$map(map),
spriteOrder(textures.NUM_SPRITES),
spriteDistance(textures.NUM_SPRITES),
ZBuffer(width)
{
$window.setVerticalSyncEnabled(true);
view_texture.create($width, $height);
view_sprite.setTexture(view_texture);
view_sprite.setPosition(0, 0);
pixels = make_unique<RGBA[]>($width * $height);
textures.load_textures();
}
void Raycaster::set_position(int x, int y) {
view_sprite.setPosition(x, y);
}
void Raycaster::position_camera(float player_x, float player_y) {
// x and y start position
posX = player_x;
posY = player_y;
}
void Raycaster::draw_pixel_buffer() {
view_texture.update((uint8_t *)pixels.get(), $width, $height, 0, 0);
// BUG: can I do this once and just update it?
$window.draw(view_sprite);
}
void Raycaster::clear() {
std::fill_n(pixels.get(), $width * $height, 0);
$window.clear();
}
void Raycaster::sprite_casting() {
const int textureWidth = textures.TEXTURE_WIDTH;
const int textureHeight = textures.TEXTURE_HEIGHT;
// sort sprites from far to close
for(int i = 0; i < textures.NUM_SPRITES; i++) {
spriteOrder[i] = i;
// this is just the distance calculation
spriteDistance[i] = ((posX - textures.SPRITE[i].x) *
(posX - textures.SPRITE[i].x) +
(posY - textures.SPRITE[i].y) *
(posY - textures.SPRITE[i].y));
}
sort_sprites(spriteOrder, spriteDistance, textures.NUM_SPRITES);
// after sorting the sprites, do the projection
for(int i = 0; i < textures.NUM_SPRITES; i++) {
int sprite_index = spriteOrder[i];
Sprite& sprite_rec = textures.get_sprite(sprite_index);
double spriteX = sprite_rec.x - posX;
double spriteY = sprite_rec.y - posY;
auto& sprite_texture = textures.get(sprite_rec.texture);
//transform sprite with the inverse camera matrix
// [ planeX dirX ] -1 [ dirY -dirX ]
// [ ] = 1/(planeX*dirY-dirX*planeY) * [ ]
// [ planeY dirY ] [ -planeY planeX ]
double invDet = 1.0 / (planeX * dirY - dirX * planeY); // required for correct matrix multiplication
double transformX = invDet * (dirY * spriteX - dirX * spriteY);
//this is actually the depth inside the screen, that what Z is in 3D, the distance of sprite to player, matching sqrt(spriteDistance[i])
double transformY = invDet * (-planeY * spriteX + planeX * spriteY);
int spriteScreenX = int(($width / 2) * (1 + transformX / transformY));
int vMoveScreen = int(sprite_rec.elevation * -1 / transformY);
// calculate the height of the sprite on screen
//using "transformY" instead of the real distance prevents fisheye
int spriteHeight = abs(int($height / transformY)) / sprite_rec.vDiv;
//calculate lowest and highest pixel to fill in current stripe
int drawStartY = -spriteHeight / 2 + $height / 2 + vMoveScreen;
if(drawStartY < 0) drawStartY = 0;
int drawEndY = spriteHeight / 2 + $height / 2 + vMoveScreen;
if(drawEndY >= $height) drawEndY = $height - 1;
// calculate width the the sprite
// same as height of sprite, given that it's square
int spriteWidth = abs(int($height / transformY)) / sprite_rec.uDiv;
int drawStartX = -spriteWidth / 2 + spriteScreenX;
if(drawStartX < 0) drawStartX = 0;
int drawEndX = spriteWidth / 2 + spriteScreenX;
if(drawEndX > $width) drawEndX = $width;
//loop through every vertical stripe of the sprite on screen
for(int stripe = drawStartX; stripe < drawEndX; stripe++) {
int texX = int(256 * (stripe - (-spriteWidth / 2 + spriteScreenX)) * textureWidth / spriteWidth) / 256;
// the conditions in the if are:
// 1) it's in front of the camera plane so you don't see things behind you
// 2) ZBuffer, with perpendicular distance
if(transformY > 0 && transformY < ZBuffer[stripe]) {
for(int y = drawStartY; y < drawEndY; y++) {
//256 and 128 factors to avoid floats
int d = (y - vMoveScreen) * 256 - $height * 128 + spriteHeight * 128;
int texY = ((d * textureHeight) / spriteHeight) / 256;
//get current color from the texture
// BUG: this crashes sometimes when the math goes out of bounds
uint32_t color = sprite_texture[textureWidth * texY + texX];
// poor person's transparency, get current color from the texture
if((color & 0x00FFFFFF) != 0) {
RGBA pixel = color;
pixels[pixcoord(stripe, y)] = pixel;
}
}
}
}
}
}
void Raycaster::cast_rays() {
double perpWallDist;
// WALL CASTING
for(int x = 0; x < $width; x++) {
// calculate ray position and direction
double cameraX = 2 * x / double($width) - 1; // x-coord in camera space
double rayDirX = dirX + planeX * cameraX;
double rayDirY = dirY + planeY * cameraX;
// which box of the map we're in
int mapX = int(posX);
int mapY = int(posY);
// length of ray from current pos to next x or y-side
double sideDistX;
double sideDistY;
// length of ray from one x or y-side to next x or y-side
double deltaDistX = std::abs(1.0 / rayDirX);
double deltaDistY = std::abs(1.0 / rayDirY);
int stepX = 0;
int stepY = 0;
int hit = 0;
int side = 0;
// calculate step and initial sideDist
if(rayDirX < 0) {
stepX = -1;
sideDistX = (posX - mapX) * deltaDistX;
} else {
stepX = 1;
sideDistX = (mapX + 1.0 - posX) * deltaDistX;
}
if(rayDirY < 0) {
stepY = -1;
sideDistY = (posY - mapY) * deltaDistY;
} else {
stepY = 1;
sideDistY = (mapY + 1.0 - posY) * deltaDistY;
}
// perform DDA
while(hit == 0) {
if(sideDistX < sideDistY) {
sideDistX += deltaDistX;
mapX += stepX;
side = 0;
} else {
sideDistY += deltaDistY;
mapY += stepY;
side = 1;
}
if($map[mapX][mapY] > 0) hit = 1;
}
if(side == 0) {
perpWallDist = (sideDistX - deltaDistX);
} else {
perpWallDist = (sideDistY - deltaDistY);
}
int lineHeight = int($height / perpWallDist);
int drawStart = -lineHeight / 2 + $height / 2 + PITCH;
if(drawStart < 0) drawStart = 0;
int drawEnd = lineHeight / 2 + $height / 2 + PITCH;
if(drawEnd >= $height) drawEnd = $height - 1;
auto &texture = textures.get($map[mapX][mapY] - 1);
// calculate value of wallX
double wallX; // where exactly the wall was hit
if(side == 0) {
wallX = posY + perpWallDist * rayDirY;
} else {
wallX = posX + perpWallDist * rayDirX;
}
wallX -= floor((wallX));
// x coorindate on the texture
int texX = int(wallX * double(textures.TEXTURE_WIDTH));
if(side == 0 && rayDirX > 0) texX = textures.TEXTURE_WIDTH - texX - 1;
if(side == 1 && rayDirY < 0) texX = textures.TEXTURE_WIDTH - texX - 1;
// LODE: an integer-only bresenham or DDA like algorithm could make the texture coordinate stepping faster
// How much to increase the texture coordinate per screen pixel
double step = 1.0 * textures.TEXTURE_HEIGHT / lineHeight;
// Starting texture coordinate
double texPos = (drawStart - PITCH - $height / 2 + lineHeight / 2) * step;
for(int y = drawStart; y < drawEnd; y++) {
int texY = (int)texPos & (textures.TEXTURE_HEIGHT - 1);
texPos += step;
RGBA pixel = texture[textures.TEXTURE_HEIGHT * texY + texX];
pixels[pixcoord(x, y)] = pixel;
}
// SET THE ZBUFFER FOR THE SPRITE CASTING
ZBuffer[x] = perpWallDist;
}
}
void Raycaster::draw_ceiling_floor() {
const int textureWidth = textures.TEXTURE_WIDTH;
const int textureHeight = textures.TEXTURE_HEIGHT;
auto& floorTexture = textures.get(textures.floor);
auto& ceilingTexture = textures.get(textures.ceiling);
for(int y = $height / 2 + 1; y < $height; ++y) {
// rayDir for leftmost ray (x=0) and rightmost (x = w)
float rayDirX0 = dirX - planeX;
float rayDirY0 = dirY - planeY;
float rayDirX1 = dirX + planeX;
float rayDirY1 = dirY + planeY;
// current y position compared to the horizon
int p = y - $height / 2;
// vertical position of the camera
// 0.5 will the camera at the center horizon. For a
// different value you need a separate loop for ceiling
// and floor since they're no longer symmetrical.
float posZ = 0.5 * $height;
// horizontal distance from the camera to the floor for the current row
// 0.5 is the z position exactly in the middle between floor and ceiling
// See NOTE in Lode's code for more.
float rowDistance = posZ / p;
// calculate the real world step vector we have to add for each x (parallel to camera plane)
// adding step by step avoids multiplications with a wight in the inner loop
float floorStepX = rowDistance * (rayDirX1 - rayDirX0) / $width;
float floorStepY = rowDistance * (rayDirY1 - rayDirY0) / $width;
// real world coordinates of the leftmost column.
// This will be updated as we step to the right
float floorX = posX + rowDistance * rayDirX0;
float floorY = posY + rowDistance * rayDirY0;
for(int x = 0; x < $width; ++x) {
// the cell coord is simply taken from the int parts of
// floorX and floorY.
int cellX = int(floorX);
int cellY = int(floorY);
// get the texture coordinat from the fractional part
int tx = int(textureWidth * (floorX - cellX)) & (textureWidth - 1);
int ty = int(textureWidth * (floorY - cellY)) & (textureHeight - 1);
floorX += floorStepX;
floorY += floorStepY;
// now get the pixel from the texture
uint32_t color;
// this uses the previous ty/tx fractional parts of
// floorX cellX to find the texture x/y. How?
// FLOOR
color = floorTexture[textureWidth * ty + tx];
pixels[pixcoord(x, y)] = color;
// CEILING
color = ceilingTexture[textureWidth * ty + tx];
pixels[pixcoord(x, $height - y - 1)] = color;
}
}
}
void Raycaster::render() {
draw_ceiling_floor();
cast_rays();
sprite_casting();
draw_pixel_buffer();
}
bool Raycaster::empty_space(int new_x, int new_y) {
dbc::check((size_t)new_x < $map.cols(),
format("x={} too wide={}", new_x, $map.cols()));
dbc::check((size_t)new_y < $map.rows(),
format("y={} too high={}", new_y, $map.rows()));
return $map[new_x][new_y] == 0;
}
void Raycaster::sort_sprites(std::vector<int>& order, std::vector<double>& dist, int amount)
{
std::vector<std::pair<double, int>> sprites(amount);
for(int i = 0; i < amount; i++) {
sprites[i].first = dist[i];
sprites[i].second = order[i];
}
std::sort(sprites.begin(), sprites.end());
// restore in reverse order
for(int i = 0; i < amount; i++) {
dist[i] = sprites[amount - i - 1].first;
order[i] = sprites[amount - i - 1].second;
}
}
void Raycaster::run(double speed, int dir) {
double speed_and_dir = speed * dir;
if(empty_space(int(posX + dirX * speed_and_dir), int(posY))) {
posX += dirX * speed_and_dir;
}
if(empty_space(int(posX), int(posY + dirY * speed_and_dir))) {
posY += dirY * speed_and_dir;
}
}
void Raycaster::rotate(double speed, int dir) {
double speed_and_dir = speed * dir;
double oldDirX = dirX;
dirX = dirX * cos(speed_and_dir) - dirY * sin(speed_and_dir);
dirY = oldDirX * sin(speed_and_dir) + dirY * cos(speed_and_dir);
double oldPlaneX = planeX;
planeX = planeX * cos(speed_and_dir) - planeY * sin(speed_and_dir);
planeY = oldPlaneX * sin(speed_and_dir) + planeY * cos(speed_and_dir);
}

@ -0,0 +1,95 @@
#pragma once
#include <fmt/core.h>
#include <SFML/Graphics.hpp>
#include <SFML/Graphics/Image.hpp>
#include <numbers>
#include <algorithm>
#include <cmath>
#include "amt/matrix.hpp"
#include <cstdlib>
#include <array>
#include "dbc.hpp"
#include <memory>
using Matrix = amt::Matrix<int>;
struct Sprite {
double x;
double y;
int texture;
// ZED: this should be a separate transform parameter
double elevation=0;
int uDiv=1;
int vDiv=1;
};
using RGBA = uint32_t;
struct TexturePack {
int NUM_SPRITES=1;
int NUM_TEXTURES=11;
int TEXTURE_WIDTH=256; // must be power of two
int TEXTURE_HEIGHT=256; // must be power of two
std::vector<std::vector<uint32_t>> images;
std::vector<Sprite> SPRITE{{4.0, 3.55, 8}};
const int floor = 3;
const int ceiling = 6;
void load_textures();
std::vector<uint32_t> load_image(const char *filename);
Sprite &get_sprite(size_t sprite_num);
std::vector<uint32_t>& get(size_t num);
};
struct Raycaster {
int PITCH=0;
TexturePack textures;
double posX = 0;
double posY = 0;
// initial direction vector
double dirX = -1;
double dirY = 0;
// the 2d raycaster version of camera plane
double planeX = 0;
double planeY = 0.66;
sf::Texture view_texture;
sf::Sprite view_sprite;
//ZED: USE smart pointer for this
std::unique_ptr<RGBA[]> pixels = nullptr;
int $width;
int $height;
sf::RenderWindow& $window;
Matrix& $map;
std::vector<int> spriteOrder;
std::vector<double> spriteDistance;
std::vector<double> ZBuffer; // width
Raycaster(sf::RenderWindow& window, Matrix &map, int width, int height);
void draw_pixel_buffer();
void clear();
void cast_rays();
void draw_ceiling_floor();
void sprite_casting();
void sort_sprites(std::vector<int>& order, std::vector<double>& dist, int amount);
void render();
bool empty_space(int new_x, int new_y);
void run(double speed, int dir);
void rotate(double speed, int dir);
void position_camera(float player_x, float player_y);
void set_position(int x, int y);
inline size_t pixcoord(int x, int y) {
return ((y) * $width) + (x);
}
};

@ -28,3 +28,10 @@ executable('zedcaster', [
'main.cpp'
],
dependencies: dependencies)
executable('amtcaster', [
'dbc.cpp',
'amt/raycaster.cpp',
'amt/main.cpp'
],
dependencies: dependencies)

@ -0,0 +1,74 @@
#include <cstdint>
#include <print>
#include "matrix.hpp"
#include "pixel.hpp"
using namespace amt;
int main() {
auto const format = PixelFormat::abgr;
PixelBuf b(2, 2, RGBA(0x01, 0x02, 0x03, 0x04));
b[1][1] = HSLA(280, 20, 50, 80);
std::println("{:h}", b);
std::uint8_t ps[4 * 4] = {};
b.copy_to(ps, format);
/*for (auto i = 0zu; i < sizeof(ps); ++i) {*/
/* std::println("[{}]: 0x{:0x}", i, ps[i]);*/
/*}*/
PixelBuf test(ps, 2, 2, format);
for (auto i = 0zu; auto color: test) {
std::println("[{}]: {}", i++, color);
}
auto m = Matrix<int>{
{0, 1},
{3, 4}
};
std::println("{}", m);
{
auto ca = RGBA::from_hex(0x333333ff);
auto cb = RGBA::from_hex(0xaabbccff);
std::println("========= RGBA ===========");
std::println("Normal: 0x{:0x}", ca.blend(cb, BlendMode::normal).to_hex());
std::println("Multiply: 0x{:0x}", ca.blend(cb, BlendMode::multiply).to_hex());
std::println("Screen: 0x{:0x}", ca.blend(cb, BlendMode::screen).to_hex());
std::println("Overlay: 0x{:0x}", ca.blend(cb, BlendMode::overlay).to_hex());
std::println("darken: 0x{:0x}", ca.blend(cb, BlendMode::darken).to_hex());
std::println("lighten: 0x{:0x}", ca.blend(cb, BlendMode::lighten).to_hex());
std::println("Dodge: 0x{:0x}", ca.blend(cb, BlendMode::colorDodge).to_hex());
std::println("Burn: 0x{:0x}", ca.blend(cb, BlendMode::colorBurn).to_hex());
std::println("hard light: 0x{:0x}", ca.blend(cb, BlendMode::hardLight).to_hex());
std::println("soft light: 0x{:0x}", ca.blend(cb, BlendMode::softLight).to_hex());
std::println("difference: 0x{:0x}", ca.blend(cb, BlendMode::difference).to_hex());
std::println("exclusion: 0x{:0x}", ca.blend(cb, BlendMode::exclusion).to_hex());
}
{
HSLA ca = RGBA::from_hex(0x333333ff);
HSLA cb = RGBA::from_hex(0xaabbccff);
std::println("========= HSLA ===========");
std::println("Normal: {}", ca.blend(cb, BlendMode::normal));
std::println("Multiply: {}", ca.blend(cb, BlendMode::multiply));
std::println("Screen: {}", ca.blend(cb, BlendMode::screen));
std::println("Overlay: {}", ca.blend(cb, BlendMode::overlay));
std::println("darken: {}", ca.blend(cb, BlendMode::darken));
std::println("lighten: {}", ca.blend(cb, BlendMode::lighten));
std::println("Dodge: {}", ca.blend(cb, BlendMode::colorDodge));
std::println("Burn: {}", ca.blend(cb, BlendMode::colorBurn));
std::println("hard light: {}", ca.blend(cb, BlendMode::hardLight));
std::println("soft light: {}", ca.blend(cb, BlendMode::softLight));
std::println("difference: {}", ca.blend(cb, BlendMode::difference));
std::println("exclusion: {}", ca.blend(cb, BlendMode::exclusion));
}
}
Loading…
Cancel
Save