Finally have a name for my little matrix shape iterator library. I present to you, the SHITErators. Are they THE shit? Shit? Or just Shite?

main
Zed A. Shaw 1 week ago
parent ffdea41faa
commit 73b85e8057
  1. 66
      matrix.cpp
  2. 386
      matrix.hpp
  3. 530
      shiterator.hpp
  4. 28
      tests/matrix.cpp

@ -9,72 +9,6 @@ using namespace fmt;
using std::min, std::max;
namespace matrix {
flood::flood(Matrix &mat, Point start, int old_val, int new_val) :
mat(mat), start(start), old_val(old_val), new_val(new_val),
x(start.x), y(start.y), dirs{mat, start.x, start.y}
{
dbc::check(old_val != new_val, "what you doing?");
current_loc = start;
q.push(start);
}
bool flood::next() {
if(!q.empty()) {
if(!dirs.next()) {
// box is done reset it
auto current_loc = q.front();
q.pop();
dirs = matrix::compass{mat, current_loc.x, current_loc.y};
dirs.next();
}
// get the next thing
if(mat[dirs.y][dirs.x] <= old_val) {
mat[dirs.y][dirs.x] = new_val;
x = dirs.x;
y = dirs.y;
q.push({.x=dirs.x, .y=dirs.y});
}
return true;
} else {
return false;
}
}
line::line(Point start, Point end) :
x(start.x), y(start.y),
x1(end.x), y1(end.y)
{
dx = std::abs(x1 - x);
sx = x < x1 ? 1 : -1;
dy = std::abs(y1 - y) * -1;
sy = y < y1 ? 1 : -1;
error = dx + dy;
}
bool line::next() {
if(x != x1 || y != y1) {
int e2 = 2 * error;
if(e2 >= dy) {
error = error + dy;
x = x + sx;
}
if(e2 <= dx) {
error = error + dx;
y = y + sy;
}
return true;
} else {
return false;
}
}
void dump(const std::string &msg, Matrix &map, int show_x, int show_y) {
println("----------------- {}", msg);

@ -9,385 +9,43 @@
#include "point.hpp"
#include "rand.hpp"
#include "dbc.hpp"
#include "shiterator.hpp"
namespace matrix {
using std::vector, std::queue, std::array;
using std::min, std::max, std::floor;
using Row = shiterator::BaseRow<int>;
using Matrix = shiterator::Base<int>;
template<typename T>
using BaseRow = vector<T>;
using viewport = shiterator::viewport_t<Matrix>;
template<typename T>
using Base = vector<BaseRow<T>>;
using each_cell = shiterator::each_cell_t<Matrix>;
using Row = vector<int>;
using Matrix = vector<Row>;
using each_row = shiterator::each_row_t<Matrix>;
using box = shiterator::box_t<Matrix>;
using compass = shiterator::compass_t<Matrix>;
using circle = shiterator::circle_t<Matrix>;
using rectangle = shiterator::rectangle_t<Matrix>;
using rando_rect = shiterator::rando_rect_t<Matrix>;
using line = shiterator::line;
/*
* Just a quick thing to reset a matrix to a value.
*/
template<typename MAT, typename VAL>
inline void assign(MAT &out, VAL new_value) {
for(auto &row : out) {
row.assign(row.size(), new_value);
}
}
template<typename MAT>
inline bool inbounds(MAT &mat, size_t x, size_t y) {
// since Point.x and Point.y are size_t any negatives are massive
bool res = (y < mat.size()) && (x < mat[0].size());
return res;
}
template<typename MAT>
inline size_t width(MAT &mat) {
return mat[0].size();
}
template<typename MAT>
inline size_t height(MAT &mat) {
return mat.size();
}
template<typename T>
inline Base<T> make_base(size_t width, size_t height) {
Base<T> result(height, BaseRow<T>(width));
return result;
}
void dump(const std::string &msg, Matrix &map, int show_x=-1, int show_y=-1);
inline Matrix make(size_t width, size_t height) {
Matrix result(height, Row(width));
return result;
return shiterator::make<int>(width, height);
}
inline size_t next_x(size_t x, size_t width) {
return (x + 1) * ((x + 1) < width);
inline bool inbounds(Matrix &mat, size_t x, size_t y) {
return shiterator::inbounds(mat, x, y);
}
inline size_t next_y(size_t x, size_t y) {
return y + (x == 0);
inline size_t width(Matrix &mat) {
return shiterator::width(mat);
}
inline bool at_end(size_t y, size_t height) {
return y < height;
inline size_t height(Matrix &mat) {
return shiterator::height(mat);
}
inline bool end_row(size_t x, size_t width) {
return x == width - 1;
inline void assign(Matrix &out, int new_value) {
shiterator::assign(out, new_value);
}
void dump(const std::string &msg, Matrix &map, int show_x=-1, int show_y=-1);
template<typename MAT>
struct each_cell_t {
size_t x = ~0;
size_t y = ~0;
size_t width = 0;
size_t height = 0;
each_cell_t(MAT &mat)
{
height = matrix::height(mat);
width = matrix::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
return at_end(y, height);
}
};
template<typename MAT>
struct viewport_t {
Point start;
// this is the point in the map
size_t x;
size_t y;
// this is the point inside the box, start at 0
size_t view_x = ~0;
size_t view_y = ~0;
// viewport width/height
size_t width;
size_t height;
viewport_t(MAT &mat, Point start, int max_x, int max_y) :
start(start),
x(start.x-1),
y(start.y-1)
{
width = std::min(size_t(max_x), matrix::width(mat) - start.x);
height = std::min(size_t(max_y), matrix::height(mat) - start.y);
fmt::println("viewport_t max_x, max_y {},{} vs matrix {},{}, x={}, y={}",
max_x, max_y, matrix::width(mat), matrix::height(mat), x, y);
}
bool next() {
y = next_y(x, y);
x = next_x(x, width);
view_x = next_x(view_x, width);
view_y = next_y(view_x, view_y);
return at_end(y, height);
}
};
using viewport = viewport_t<Matrix>;
using each_cell = each_cell_t<Matrix>;
template<typename MAT>
struct each_row_t {
size_t x = ~0;
size_t y = ~0;
size_t width = 0;
size_t height = 0;
bool row = false;
each_row_t(MAT &mat) {
height = matrix::height(mat);
width = matrix::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
row = end_row(x, width);
return at_end(y, height);
}
};
using each_row = each_row_t<Matrix>;
template<typename MAT>
struct box_t {
size_t from_x;
size_t from_y;
size_t x = 0; // these are set in constructor
size_t y = 0; // again, no fancy ~ trick needed
size_t left = 0;
size_t top = 0;
size_t right = 0;
size_t bottom = 0;
box_t(MAT &mat, size_t at_x, size_t at_y, size_t size) :
box_t(mat, at_x, at_y, size, size) {
}
box_t(MAT &mat, size_t at_x, size_t at_y, size_t width, size_t height) :
from_x(at_x), from_y(at_y)
{
size_t h = matrix::height(mat);
size_t w = matrix::width(mat);
// keeps it from going below zero
// need extra -1 to compensate for the first next()
left = max(from_x, width) - width;
x = left - 1; // must be -1 for next()
// keeps it from going above width
right = min(from_x + width + 1, w);
// same for these two
top = max(from_y, height) - height;
y = top - (left == 0);
bottom = min(from_y + height + 1, h);
}
bool next() {
// calc next but allow to go to 0 for next
x = next_x(x, right);
// x will go to 0, which signals new line
y = next_y(x, y); // this must go here
// if x==0 then this moves it to min_x
x = max(x, left);
// and done
return at_end(y, bottom);
}
float distance() {
int dx = from_x - x;
int dy = from_y - y;
return sqrt((dx * dx) + (dy * dy));
}
};
using box = box_t<Matrix>;
template<typename MAT>
struct compass_t {
size_t x = 0; // these are set in constructor
size_t y = 0; // again, no fancy ~ trick needed
array<int, 4> x_dirs{0, 1, 0, -1};
array<int, 4> y_dirs{-1, 0, 1, 0};
size_t max_dirs=0;
size_t dir = ~0;
compass_t(MAT &mat, size_t x, size_t y) :
x(x), y(y)
{
array<int, 4> x_in{0, 1, 0, -1};
array<int, 4> y_in{-1, 0, 1, 0};
for(size_t i = 0; i < 4; i++) {
int nx = x + x_in[i];
int ny = y + y_in[i];
if(matrix::inbounds(mat, nx, ny)) {
x_dirs[max_dirs] = nx;
y_dirs[max_dirs] = ny;
max_dirs++;
}
}
}
bool next() {
dir++;
if(dir < max_dirs) {
x = x_dirs[dir];
y = y_dirs[dir];
return true;
} else {
return false;
}
}
};
using compass = compass_t<Matrix>;
struct flood {
Matrix &mat;
Point start;
int old_val;
int new_val;
queue<Point> q;
Point current_loc;
int x;
int y;
matrix::compass dirs;
flood(Matrix &mat, Point start, int old_val, int new_val);
bool next();
bool next_working();
};
struct line {
int x;
int y;
int x1;
int y1;
int sx;
int sy;
int dx;
int dy;
int error;
line(Point start, Point end);
bool next();
};
template<typename MAT>
struct circle_t {
float center_x;
float center_y;
float radius = 0.0f;
int y = 0;
int dx = 0;
int dy = 0;
int left = 0;
int right = 0;
int top = 0;
int bottom = 0;
int width = 0;
int height = 0;
circle_t(MAT &mat, Point center, float radius) :
center_x(center.x), center_y(center.y), radius(radius)
{
width = matrix::width(mat);
height = matrix::height(mat);
top = max(int(floor(center_y - radius)), 0);
bottom = min(int(floor(center_y + radius)), height - 1);
y = top;
}
bool next() {
y++;
if(y <= bottom) {
dy = y - center_y;
dx = floor(sqrt(radius * radius - dy * dy));
left = max(0, int(center_x) - dx);
right = min(width, int(center_x) + dx + 1);
return true;
} else {
return false;
}
}
};
using circle = circle_t<Matrix>;
template<typename MAT>
struct rectangle_t {
int x;
int y;
int top;
int left;
int width;
int height;
int right;
int bottom;
rectangle_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
top(start_y),
left(start_x),
width(width),
height(height)
{
size_t h = matrix::height(mat);
size_t w = matrix::width(mat);
y = start_y - 1;
x = left - 1; // must be -1 for next()
right = min(start_x + width, w);
y = start_y;
bottom = min(start_y + height, h);
}
bool next() {
x = next_x(x, right);
y = next_y(x, y);
x = max(x, left);
return at_end(y, bottom);
}
};
using rectangle = rectangle_t<Matrix>;
template<typename MAT>
struct rando_rect_t {
int x;
int y;
int x_offset;
int y_offset;
rectangle_t<MAT> it;
rando_rect_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
it{mat, start_x, start_y, width, height}
{
x_offset = Random::uniform(0, int(width));
y_offset = Random::uniform(0, int(height));
}
bool next() {
bool done = it.next();
x = it.left + ((it.x + x_offset) % it.width);
y = it.top + ((it.y + y_offset) % it.height);
return done;
}
};
using rando_rect = rando_rect_t<Matrix>;
}

@ -0,0 +1,530 @@
#pragma once
#include <vector>
#include <queue>
#include <string>
#include <array>
#include <numeric>
#include <algorithm>
#include <fmt/core.h>
#include "point.hpp"
#include "rand.hpp"
#include "dbc.hpp"
/*
* # What is This Shit?
*
* Announcing the Shape Iterators, or `shiterators` for short. You could also say these are Shaw's Iterators, but
* either way they are the _shit_. Or are they shit? You decide. Maybe they're "shite"?
*
* A shiterator is a simple generator that converts 2D shapes into a 1D stream of x/y coordinates. You give it a matrix, some parameters like start, end, etc. and each time you call `next()` you the next viable x/y coordinate to complete the shape.
*
* A shiterator tries to ensure a few things:
*
* 1. All x/y values will be within the Matrix you give it.
* 2. They try to not store anything and only calculate the math necessary to linearlize the shape.
* 3. You can store them and incrementally call next to get the next value.
* 4. You should be able to compose them together on the same Matrix or different matrices of the same dimensions.
* 5. Most of them will only require 1 for-loop, the few that require 2 only do this so you can draw the inside of a shape. `circle` is like this.
* 6. They don't assume any particular classes or require subclassing. As long as the type given enables `mat[y][x]` (row major) access then it'll work.
* 7. The matrix given to a shiterator isn't actually attached to it, so you can use one matrix to setup an iterator, then apply the x/y values to any other matrix of the same dimensions.
* 8. More importantly, shiterators _do not return any values from the matrix_. They only do the math for coordinates and leave it to you to work your matrix.
*
* These shiterators are used all over the game to do map rendering, randomization, drawing, nearly everything that involves a shape.
*
* ## Algorithms I Need
*
* I'm currently looking for a few algorithms, so if you know how to do these let me know:
*
* 1. _Flood fill_ This turns out to be really hard because most algorithms require keeping track of visited cells with a queue, recursion, etc.
* 2. _Random rectangle fill_ I have something that mostly works but it's really only random across each y-axis, then separate y-axes are randomized.
* 3. _Dijkstra Map_ I have a Dijkstra algorithm but it's not in this style yet. Look in `worldbuilder.cpp` for my current implementation.
* 4. _Viewport_ Currently working on this but I need to have a rectangle I can move around as a viewport.
*
*
* ## Usage
*
* Check the `matrix.hpp` for an example if you want to make it more conventient for your own type.
*
* ## Thanks
*
* Special thanks for Amit and hirdrac for their help with the math and for
* giving me the initial idea. hirdrac doesn't want to be held responsible for
* this travesty but he showed me that you can do iteration and _not_ use the
* weird C++ iterators. Amit did a lot to show me how to do these calculations
* without branching. Thanks to you both and everyone helping me while I
* stream my development.
*/
namespace shiterator { using std::vector, std::queue, std::array; using
std::min, std::max, std::floor;
template<typename T>
using BaseRow = vector<T>;
template<typename T>
using Base = vector<BaseRow<T>>;
template<typename T>
inline Base<T> make(size_t width, size_t height) {
Base<T> result(height, BaseRow<T>(width));
return result;
}
/*
* Just a quick thing to reset a matrix to a value.
*/
template<typename MAT, typename VAL>
inline void assign(MAT &out, VAL new_value) {
for(auto &row : out) {
row.assign(row.size(), new_value);
}
}
/*
* Tells you if a coordinate is in bounds of the matrix
* and therefore safe to use.
*/
template<typename MAT>
inline bool inbounds(MAT &mat, size_t x, size_t y) {
// since Point.x and Point.y are size_t any negatives are massive
return (y < mat.size()) && (x < mat[0].size());
}
/*
* Gives the width of a matrix. Assumes row major (y/x)
* and vector API .size().
*/
template<typename MAT>
inline size_t width(MAT &mat) {
return mat[0].size();
}
/*
* Same as shiterator::width but just the height.
*/
template<typename MAT>
inline size_t height(MAT &mat) {
return mat.size();
}
/*
* These are internal calculations that help
* with keeping track of the next x coordinate.
*/
inline size_t next_x(size_t x, size_t width) {
return (x + 1) * ((x + 1) < width);
}
/*
* Same as next_x but updates the next y coordinate.
* It uses the fact that when x==0 you have a new
* line so increment y.
*/
inline size_t next_y(size_t x, size_t y) {
return y + (x == 0);
}
/*
* Figures out if you're at the end of the shape,
* which is usually when y > height.
*/
inline bool at_end(size_t y, size_t height) {
return y < height;
}
/*
* Determines if you're at the end of a row.
*/
inline bool end_row(size_t x, size_t width) {
return x == width - 1;
}
/*
* Most basic shiterator. It just goes through
* every cell in the matrix in linear order
* with not tracking of anything else.
*/
template<typename MAT>
struct each_cell_t {
size_t x = ~0;
size_t y = ~0;
size_t width = 0;
size_t height = 0;
each_cell_t(MAT &mat)
{
height = shiterator::height(mat);
width = shiterator::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
return at_end(y, height);
}
};
/*
* This is just each_cell_t but it sets
* a boolean value `bool row` so you can
* tell when you've reached the end of a
* row. This is mostly used for printing
* out a matrix and similar just drawing the
* whole thing with its boundaries.
*/
template<typename MAT>
struct each_row_t {
size_t x = ~0;
size_t y = ~0;
size_t width = 0;
size_t height = 0;
bool row = false;
each_row_t(MAT &mat) {
height = shiterator::height(mat);
width = shiterator::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
row = end_row(x, width);
return at_end(y, height);
}
};
/*
* This is a CENTERED box, that will create
* a centered rectangle around a point of a
* certain dimension. This kind of needs a
* rewrite but if you want a rectangle from
* a upper corner then use rectangle_t type.
*
* Passing 1 parameter for the size will make
* a square.
*/
template<typename MAT>
struct box_t {
size_t from_x;
size_t from_y;
size_t x = 0; // these are set in constructor
size_t y = 0; // again, no fancy ~ trick needed
size_t left = 0;
size_t top = 0;
size_t right = 0;
size_t bottom = 0;
box_t(MAT &mat, size_t at_x, size_t at_y, size_t size) :
box_t(mat, at_x, at_y, size, size) {
}
box_t(MAT &mat, size_t at_x, size_t at_y, size_t width, size_t height) :
from_x(at_x), from_y(at_y)
{
size_t h = shiterator::height(mat);
size_t w = shiterator::width(mat);
// keeps it from going below zero
// need extra -1 to compensate for the first next()
left = max(from_x, width) - width;
x = left - 1; // must be -1 for next()
// keeps it from going above width
right = min(from_x + width + 1, w);
// same for these two
top = max(from_y, height) - height;
y = top - (left == 0);
bottom = min(from_y + height + 1, h);
}
bool next() {
// calc next but allow to go to 0 for next
x = next_x(x, right);
// x will go to 0, which signals new line
y = next_y(x, y); // this must go here
// if x==0 then this moves it to min_x
x = max(x, left);
// and done
return at_end(y, bottom);
}
/*
* This was useful for doing quick lighting
* calculations, and I might need to implement
* it in other shiterators. It gives the distance
* to the center from the current x/y.
*/
float distance() {
int dx = from_x - x;
int dy = from_y - y;
return sqrt((dx * dx) + (dy * dy));
}
};
/*
* Stupid simple compass shape North/South/East/West.
* This comes up a _ton_ when doing searching, flood
* algorithms, collision, etc. Probably not the
* fastest way to do it but good enough.
*/
template<typename MAT>
struct compass_t {
size_t x = 0; // these are set in constructor
size_t y = 0; // again, no fancy ~ trick needed
array<int, 4> x_dirs{0, 1, 0, -1};
array<int, 4> y_dirs{-1, 0, 1, 0};
size_t max_dirs=0;
size_t dir = ~0;
compass_t(MAT &mat, size_t x, size_t y) :
x(x), y(y)
{
array<int, 4> x_in{0, 1, 0, -1};
array<int, 4> y_in{-1, 0, 1, 0};
for(size_t i = 0; i < 4; i++) {
int nx = x + x_in[i];
int ny = y + y_in[i];
if(shiterator::inbounds(mat, nx, ny)) {
x_dirs[max_dirs] = nx;
y_dirs[max_dirs] = ny;
max_dirs++;
}
}
}
bool next() {
dir++;
if(dir < max_dirs) {
x = x_dirs[dir];
y = y_dirs[dir];
return true;
} else {
return false;
}
}
};
/*
* Draws a line from start to end using a algorithm from
* https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
* No idea if the one I picked is best but it's the one
* that works in the shiterator requirements and produced
* good results.
*
* _WARNING_: This one doesn't check if the start/end are
* within your Matrix, as it's assumed _you_ did that
* already.
*/
struct line {
int x;
int y;
int x1;
int y1;
int sx;
int sy;
int dx;
int dy;
int error;
line(Point start, Point end) :
x(start.x), y(start.y),
x1(end.x), y1(end.y)
{
dx = std::abs(x1 - x);
sx = x < x1 ? 1 : -1;
dy = std::abs(y1 - y) * -1;
sy = y < y1 ? 1 : -1;
error = dx + dy;
}
bool next() {
if(x != x1 || y != y1) {
int e2 = 2 * error;
if(e2 >= dy) {
error = error + dy;
x = x + sx;
}
if(e2 <= dx) {
error = error + dx;
y = y + sy;
}
return true;
} else {
return false;
}
}
};
/*
* Draws a simple circle using a fairly naive algorithm
* but one that actually worked. So, so, so, so many
* circle drawing algorithms described online don't work
* or are flat wrong. Even the very best I could find
* did overdrawing of multiple lines or simply got the
* math wrong. Keep in mind, _I_ am bad at this trig math
* so if I'm finding errors in your circle drawing then
* you got problems.
*
* This one is real simple, and works. If you got better
* then take the challenge but be ready to get it wrong.
*/
template<typename MAT>
struct circle_t {
float center_x;
float center_y;
float radius = 0.0f;
int y = 0;
int dx = 0;
int dy = 0;
int left = 0;
int right = 0;
int top = 0;
int bottom = 0;
int width = 0;
int height = 0;
circle_t(MAT &mat, Point center, float radius) :
center_x(center.x), center_y(center.y), radius(radius)
{
width = shiterator::width(mat);
height = shiterator::height(mat);
top = max(int(floor(center_y - radius)), 0);
bottom = min(int(floor(center_y + radius)), height - 1);
y = top;
}
bool next() {
y++;
if(y <= bottom) {
dy = y - center_y;
dx = floor(sqrt(radius * radius - dy * dy));
left = max(0, int(center_x) - dx);
right = min(width, int(center_x) + dx + 1);
return true;
} else {
return false;
}
}
};
/*
* Basic rectangle shiterator, and like box and rando_rect_t you can
* pass only 1 parameter for size to do a square.
*/
template<typename MAT>
struct rectangle_t {
int x;
int y;
int top;
int left;
int width;
int height;
int right;
int bottom;
rectangle_t(MAT &mat, size_t start_x, size_t start_y, size_t size) :
rectangle_t(mat, start_x, start_y, size, size) {
}
rectangle_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
top(start_y),
left(start_x),
width(width),
height(height)
{
size_t h = shiterator::height(mat);
size_t w = shiterator::width(mat);
y = start_y - 1;
x = left - 1; // must be -1 for next()
right = min(start_x + width, w);
y = start_y;
bottom = min(start_y + height, h);
}
bool next() {
x = next_x(x, right);
y = next_y(x, y);
x = max(x, left);
return at_end(y, bottom);
}
};
/*
* WIP: This one is used to place entities randomly but
* could be used for effects like random destruction of floors.
* It simply "wraps" the rectangle_t but randomizes the x/y values
* using a random starting point. This makes it random across the
* x-axis but only partially random across the y.
*/
template<typename MAT>
struct rando_rect_t {
int x;
int y;
int x_offset;
int y_offset;
rectangle_t<MAT> it;
rando_rect_t(MAT &mat, size_t start_x, size_t start_y, size_t size) :
rando_rect_t(mat, start_x, start_y, size, size) {
}
rando_rect_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
it{mat, start_x, start_y, width, height}
{
x_offset = Random::uniform(0, int(width));
y_offset = Random::uniform(0, int(height));
}
bool next() {
bool done = it.next();
x = it.left + ((it.x + x_offset) % it.width);
y = it.top + ((it.y + y_offset) % it.height);
return done;
}
};
/*
* BROKEN: I'm actually not sure what I'm trying to
* do here yet.
*/
template<typename MAT>
struct viewport_t {
Point start;
// this is the point in the map
size_t x;
size_t y;
// this is the point inside the box, start at 0
size_t view_x = ~0;
size_t view_y = ~0;
// viewport width/height
size_t width;
size_t height;
viewport_t(MAT &mat, Point start, int max_x, int max_y) :
start(start),
x(start.x-1),
y(start.y-1)
{
width = std::min(size_t(max_x), shiterator::width(mat) - start.x);
height = std::min(size_t(max_y), shiterator::height(mat) - start.y);
fmt::println("viewport_t max_x, max_y {},{} vs matrix {},{}, x={}, y={}",
max_x, max_y, shiterator::width(mat), shiterator::height(mat), x, y);
}
bool next() {
y = next_y(x, y);
x = next_x(x, width);
view_x = next_x(view_x, width);
view_y = next_y(view_x, view_y);
return at_end(y, height);
}
};
}

@ -183,34 +183,6 @@ TEST_CASE("thrash compass iterators", "[matrix:compass]") {
}
}
TEST_CASE("prototype flood algorithm", "[matrix:flood]") {
for(int count = 0; count < 20; count++) {
size_t width = Random::uniform<size_t>(10, 25);
size_t height = Random::uniform<size_t>(10, 33);
Map map(width,height);
WorldBuilder builder(map);
builder.generate_map();
if(map.room_count() < 2) continue;
Point start;
REQUIRE(map.place_entity(map.room_count() / 2, start));
map.set_target(start);
map.make_paths();
Matrix result = map.paths();
// matrix::dump("WALLS BEFORE FLOOD", result, start.x, start.y);
for(matrix::flood it{result, start, 3, 15}; it.next();) {
REQUIRE(matrix::inbounds(result, it.x, it.y));
result[it.y][it.x] = 15;
}
// matrix::dump("WALLS AFTER FLOOD", result, start.x, start.y);
}
}
TEST_CASE("prototype line algorithm", "[matrix:line]") {
size_t width = Random::uniform<size_t>(10, 12);
size_t height = Random::uniform<size_t>(10, 15);

Loading…
Cancel
Save