Took the plunge and converted my 'shaperators' into templates so they'll work on any 'matrix-like' thing.

main
Zed A. Shaw 1 week ago
parent 5adeb4e078
commit 4cb41a61db
  1. 2
      lights.cpp
  2. 139
      matrix.cpp
  3. 207
      matrix.hpp
  4. 2
      pathing.cpp
  5. 12
      tests/matrix.cpp

@ -6,7 +6,7 @@ using std::vector;
namespace lighting { namespace lighting {
void LightRender::render_square_light(LightSource source, Point at, PointList &has_light) { void LightRender::render_square_light(LightSource source, Point at, PointList &has_light) {
for(matrix::in_box it{$lightmap, at.x, at.y, (size_t)floor(source.radius)}; it.next();) { for(matrix::box it{$lightmap, at.x, at.y, (size_t)floor(source.radius)}; it.next();) {
if($paths.$paths[it.y][it.x] != WALL_PATH_LIMIT) { if($paths.$paths[it.y][it.x] != WALL_PATH_LIMIT) {
$lightmap[it.y][it.x] = light_level(source.strength, it.distance(), it.x, it.y); $lightmap[it.y][it.x] = light_level(source.strength, it.distance(), it.x, it.y);
has_light.push_back({it.x, it.y}); has_light.push_back({it.x, it.y});

@ -8,122 +8,8 @@
using namespace fmt; using namespace fmt;
using std::min, std::max; using std::min, std::max;
inline size_t next_x(size_t x, size_t width) {
return (x + 1) * ((x + 1) < width);
}
inline size_t next_y(size_t x, size_t y) {
return y + (x == 0);
}
inline bool at_end(size_t y, size_t height) {
return y < height;
}
inline bool end_row(size_t x, size_t width) {
return x == width - 1;
}
namespace matrix { namespace matrix {
each_cell::each_cell(Matrix &mat)
{
height = mat.size();
width = mat[0].size();
}
bool each_cell::next() {
x = next_x(x, width);
y = next_y(x, y);
return at_end(y, height);
}
each_row::each_row(Matrix &mat) :
$mat(mat)
{
height = $mat.size();
width = $mat[0].size();
}
bool each_row::next() {
x = next_x(x, width);
y = next_y(x, y);
row = end_row(x, width);
return at_end(y, height);
}
in_box::in_box(Matrix &mat, size_t at_x, size_t at_y, size_t size) :
from_x(at_x), from_y(at_y)
{
size_t h = matrix::height(mat);
size_t w = matrix::width(mat);
// keeps it from going below zero
// need extra -1 to compensate for the first next()
left = max(from_x, size) - size;
x = left - 1; // must be -1 for next()
// keeps it from going above width
right = min(from_x + size + 1, w);
// same for these two
top = max(from_y, size) - size;
y = top - (left == 0);
bottom = min(from_y + size + 1, h);
}
bool in_box::next() {
// calc next but allow to go to 0 for next
x = next_x(x, right);
// x will go to 0, which signals new line
y = next_y(x, y); // this must go here
// if x==0 then this moves it to min_x
x = max(x, left);
// and done
return at_end(y, bottom);
}
float in_box::distance() {
int dx = from_x - x;
int dy = from_y - y;
return sqrt((dx * dx) + (dy * dy));
}
void in_box::dump() {
println("BOX: x={},y={}; left={},right={}; top={},bottom={}",
x, y, left, right, top, bottom);
}
compass::compass(Matrix &mat, size_t x, size_t y) :
x(x), y(y)
{
array<int, 4> x_in{0, 1, 0, -1};
array<int, 4> y_in{-1, 0, 1, 0};
for(size_t i = 0; i < 4; i++) {
int nx = x + x_in[i];
int ny = y + y_in[i];
if(matrix::inbounds(mat, nx, ny)) {
x_dirs[max_dirs] = nx;
y_dirs[max_dirs] = ny;
max_dirs++;
}
}
}
bool compass::next() {
dir++;
if(dir < max_dirs) {
x = x_dirs[dir];
y = y_dirs[dir];
return true;
} else {
return false;
}
}
flood::flood(Matrix &mat, Point start, int old_val, int new_val) : flood::flood(Matrix &mat, Point start, int old_val, int new_val) :
mat(mat), start(start), old_val(old_val), new_val(new_val), mat(mat), start(start), old_val(old_val), new_val(new_val),
x(start.x), y(start.y), dirs{mat, start.x, start.y} x(start.x), y(start.y), dirs{mat, start.x, start.y}
@ -189,31 +75,6 @@ namespace matrix {
} }
} }
circle::circle(Matrix &mat, Point center, float radius) :
center_x(center.x), center_y(center.y), radius(radius)
{
width = matrix::width(mat);
height = matrix::height(mat);
top = max(int(floor(center_y - radius)), 0);
bottom = min(int(floor(center_y + radius)), height - 1);
y = top;
}
bool circle::next() {
y++;
if(y <= bottom) {
dy = y - center_y;
dx = floor(sqrt(radius * radius - dy * dy));
left = max(0, int(center_x) - dx);
right = min(width, int(center_x) + dx + 1);
return true;
} else {
return false;
}
}
void dump(const std::string &msg, Matrix &map, int show_x, int show_y) { void dump(const std::string &msg, Matrix &map, int show_x, int show_y) {
println("----------------- {}", msg); println("----------------- {}", msg);

@ -6,37 +6,105 @@
#include <fmt/core.h> #include <fmt/core.h>
#include "point.hpp" #include "point.hpp"
using fmt::println;
namespace matrix { namespace matrix {
using std::vector, std::queue, std::array; using std::vector, std::queue, std::array;
using std::min, std::max, std::floor;
typedef vector<int> Row; typedef vector<int> Row;
typedef vector<Row> Matrix; typedef vector<Row> Matrix;
struct each_cell { /*
* Just a quick thing to reset a matrix to a value.
*/
template<typename MAT, typename VAL>
inline void assign(MAT &out, VAL new_value) {
for(auto &row : out) {
row.assign(row.size(), new_value);
}
}
template<typename MAT>
inline bool inbounds(MAT &mat, size_t x, size_t y) {
// since Point.x and Point.y are size_t any negatives are massive
bool res = (y < mat.size()) && (x < mat[0].size());
return res;
}
template<typename MAT>
inline size_t width(MAT &mat) {
return mat[0].size();
}
template<typename MAT>
inline size_t height(MAT &mat) {
return mat.size();
}
inline size_t next_x(size_t x, size_t width) {
return (x + 1) * ((x + 1) < width);
}
inline size_t next_y(size_t x, size_t y) {
return y + (x == 0);
}
inline bool at_end(size_t y, size_t height) {
return y < height;
}
inline bool end_row(size_t x, size_t width) {
return x == width - 1;
}
void dump(const std::string &msg, Matrix &map, int show_x=-1, int show_y=-1);
template<typename MAT>
struct each_cell_t {
size_t x = ~0; size_t x = ~0;
size_t y = ~0; size_t y = ~0;
size_t width = 0; size_t width = 0;
size_t height = 0; size_t height = 0;
each_cell(Matrix &mat); each_cell_t(MAT &mat)
bool next(); {
height = matrix::height(mat);
width = matrix::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
return at_end(y, height);
}
}; };
struct each_row { using each_cell = each_cell_t<Matrix>;
Matrix &$mat;
template<typename MAT>
struct each_row_t {
size_t x = ~0; size_t x = ~0;
size_t y = ~0; size_t y = ~0;
size_t width = 0; size_t width = 0;
size_t height = 0; size_t height = 0;
bool row = false; bool row = false;
each_row(Matrix &mat); each_row_t(MAT &mat) {
bool next(); height = matrix::height(mat);
width = matrix::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
row = end_row(x, width);
return at_end(y, height);
}
}; };
struct in_box { using each_row = each_row_t<Matrix>;
template<typename MAT>
struct box_t {
size_t from_x; size_t from_x;
size_t from_y; size_t from_y;
size_t x = 0; // these are set in constructor size_t x = 0; // these are set in constructor
@ -46,13 +114,49 @@ namespace matrix {
size_t right = 0; size_t right = 0;
size_t bottom = 0; size_t bottom = 0;
in_box(Matrix &mat, size_t x, size_t y, size_t size); box_t(MAT &mat, size_t at_x, size_t at_y, size_t size) :
float distance(); from_x(at_x), from_y(at_y)
bool next(); {
void dump(); size_t h = matrix::height(mat);
size_t w = matrix::width(mat);
// keeps it from going below zero
// need extra -1 to compensate for the first next()
left = max(from_x, size) - size;
x = left - 1; // must be -1 for next()
// keeps it from going above width
right = min(from_x + size + 1, w);
// same for these two
top = max(from_y, size) - size;
y = top - (left == 0);
bottom = min(from_y + size + 1, h);
}
bool next() {
// calc next but allow to go to 0 for next
x = next_x(x, right);
// x will go to 0, which signals new line
y = next_y(x, y); // this must go here
// if x==0 then this moves it to min_x
x = max(x, left);
// and done
return at_end(y, bottom);
}
float distance() {
int dx = from_x - x;
int dy = from_y - y;
return sqrt((dx * dx) + (dy * dy));
}
}; };
struct compass { using box = box_t<Matrix>;
template<typename MAT>
struct compass_t {
size_t x = 0; // these are set in constructor size_t x = 0; // these are set in constructor
size_t y = 0; // again, no fancy ~ trick needed size_t y = 0; // again, no fancy ~ trick needed
array<int, 4> x_dirs{0, 1, 0, -1}; array<int, 4> x_dirs{0, 1, 0, -1};
@ -60,34 +164,36 @@ namespace matrix {
size_t max_dirs=0; size_t max_dirs=0;
size_t dir = ~0; size_t dir = ~0;
compass(Matrix &mat, size_t x, size_t y); compass_t(MAT &mat, size_t x, size_t y) :
bool next(); x(x), y(y)
}; {
array<int, 4> x_in{0, 1, 0, -1};
array<int, 4> y_in{-1, 0, 1, 0};
/* for(size_t i = 0; i < 4; i++) {
* Just a quick thing to reset a matrix to a value. int nx = x + x_in[i];
*/ int ny = y + y_in[i];
inline void assign(Matrix &out, int new_value) { if(matrix::inbounds(mat, nx, ny)) {
for(auto &row : out) { x_dirs[max_dirs] = nx;
row.assign(row.size(), new_value); y_dirs[max_dirs] = ny;
max_dirs++;
} }
} }
inline bool inbounds(Matrix &mat, size_t x, size_t y) {
// since Point.x and Point.y are size_t any negatives are massive
bool res = (y < mat.size()) && (x < mat[0].size());
return res;
} }
inline size_t width(Matrix &mat) { bool next() {
return mat[0].size(); dir++;
if(dir < max_dirs) {
x = x_dirs[dir];
y = y_dirs[dir];
return true;
} else {
return false;
} }
inline size_t height(Matrix &mat) {
return mat.size();
} }
};
void dump(const std::string &msg, Matrix &map, int show_x=-1, int show_y=-1); using compass = compass_t<Matrix>;
struct flood { struct flood {
Matrix &mat; Matrix &mat;
@ -120,7 +226,8 @@ namespace matrix {
bool next(); bool next();
}; };
struct circle { template<typename MAT>
struct circle_t {
float center_x; float center_x;
float center_y; float center_y;
float radius = 0.0f; float radius = 0.0f;
@ -134,8 +241,30 @@ namespace matrix {
int width = 0; int width = 0;
int height = 0; int height = 0;
circle(Matrix &mat, Point center, float radius); circle_t(MAT &mat, Point center, float radius) :
void update(); center_x(center.x), center_y(center.y), radius(radius)
bool next(); {
width = matrix::width(mat);
height = matrix::height(mat);
top = max(int(floor(center_y - radius)), 0);
bottom = min(int(floor(center_y + radius)), height - 1);
y = top;
}
bool next() {
y++;
if(y <= bottom) {
dy = y - center_y;
dx = floor(sqrt(radius * radius - dy * dy));
left = max(0, int(center_x) - dx);
right = min(width, int(center_x) + dx + 1);
return true;
} else {
return false;
}
}
}; };
using circle = circle_t<Matrix>;
} }

@ -6,7 +6,7 @@
using std::vector; using std::vector;
inline void add_neighbors(PointList &neighbors, Matrix &closed, size_t y, size_t x) { inline void add_neighbors(PointList &neighbors, Matrix &closed, size_t y, size_t x) {
for(matrix::in_box it{closed, x, y, 1}; it.next();) { for(matrix::box it{closed, x, y, 1}; it.next();) {
if(closed[it.y][it.x] == 0) { if(closed[it.y][it.x] == 0) {
closed[it.y][it.x] = 1; closed[it.y][it.x] = 1;
neighbors.push_back({.x=it.x, .y=it.y}); neighbors.push_back({.x=it.x, .y=it.y});

@ -39,7 +39,7 @@ TEST_CASE("basic matrix iterator", "[matrix:basic]") {
{ {
// test getting the correct height in the middle // test getting the correct height in the middle
row_count = 0; row_count = 0;
matrix::in_box box{walls, 2,2, 1}; matrix::box box{walls, 2,2, 1};
while(box.next()) { while(box.next()) {
row_count += box.x == box.left; row_count += box.x == box.left;
@ -55,7 +55,7 @@ TEST_CASE("basic matrix iterator", "[matrix:basic]") {
// confirm boxes have the right number of rows // confirm boxes have the right number of rows
// when x goes to 0 on first next call // when x goes to 0 on first next call
row_count = 0; row_count = 0;
matrix::in_box box{walls, 1, 1, 1}; matrix::box box{walls, 1, 1, 1};
while(box.next()) { while(box.next()) {
row_count += box.x == box.left; row_count += box.x == box.left;
@ -81,7 +81,7 @@ inline void random_matrix(Matrix &out) {
} }
} }
TEST_CASE("thash matrix iterators", "[matrix]") { TEST_CASE("thrash matrix iterators", "[matrix]") {
for(int count = 0; count < Random::uniform<int>(10,30); count++) { for(int count = 0; count < Random::uniform<int>(10,30); count++) {
size_t width = Random::uniform<size_t>(1, 100); size_t width = Random::uniform<size_t>(1, 100);
size_t height = Random::uniform<size_t>(1, 100); size_t height = Random::uniform<size_t>(1, 100);
@ -111,7 +111,7 @@ TEST_CASE("thrash box distance iterators", "[matrix:distance]") {
size_t size = Random::uniform<int>(4, 10); size_t size = Random::uniform<int>(4, 10);
Point target{width/2, height/2}; Point target{width/2, height/2};
matrix::in_box box{result, target.x, target.y, size}; matrix::box box{result, target.x, target.y, size};
while(box.next()) { while(box.next()) {
result[box.y][box.x] = box.distance(); result[box.y][box.x] = box.distance();
} }
@ -138,7 +138,7 @@ TEST_CASE("thrash box iterators", "[matrix]") {
PointList result; PointList result;
// make a random size box // make a random size box
size_t size = Random::uniform<int>(1, 33); size_t size = Random::uniform<int>(1, 33);
matrix::in_box box{test, target.x, target.y, size}; matrix::box box{test, target.x, target.y, size};
while(box.next()) { while(box.next()) {
test[box.y][box.x] = test_i; test[box.y][box.x] = test_i;
@ -217,7 +217,7 @@ TEST_CASE("prototype line algorithm", "[matrix:line]") {
// create a target for the paths // create a target for the paths
Point start{.x=map.width() / 2, .y=map.height()/2}; Point start{.x=map.width() / 2, .y=map.height()/2};
for(matrix::in_box box{map.walls(), start.x, start.y, 3}; for(matrix::box box{map.walls(), start.x, start.y, 3};
box.next();) box.next();)
{ {
Matrix result = map.walls(); Matrix result = map.walls();

Loading…
Cancel
Save