The next little game in the series where I make a fancy rogue game.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
roguish/matrix.hpp

393 lines
8.5 KiB

#pragma once
#include <vector>
#include <queue>
#include <string>
#include <array>
#include <numeric>
#include <algorithm>
#include <fmt/core.h>
#include "point.hpp"
#include "rand.hpp"
#include "dbc.hpp"
namespace matrix {
using std::vector, std::queue, std::array;
using std::min, std::max, std::floor;
template<typename T>
using BaseRow = vector<T>;
template<typename T>
using Base = vector<BaseRow<T>>;
using Row = vector<int>;
using Matrix = vector<Row>;
/*
* Just a quick thing to reset a matrix to a value.
*/
template<typename MAT, typename VAL>
inline void assign(MAT &out, VAL new_value) {
for(auto &row : out) {
row.assign(row.size(), new_value);
}
}
template<typename MAT>
inline bool inbounds(MAT &mat, size_t x, size_t y) {
// since Point.x and Point.y are size_t any negatives are massive
bool res = (y < mat.size()) && (x < mat[0].size());
return res;
}
template<typename MAT>
inline size_t width(MAT &mat) {
return mat[0].size();
}
template<typename MAT>
inline size_t height(MAT &mat) {
return mat.size();
}
template<typename T>
inline Base<T> make_base(size_t width, size_t height) {
Base<T> result(height, BaseRow<T>(width));
return result;
}
inline Matrix make(size_t width, size_t height) {
Matrix result(height, Row(width));
return result;
}
inline size_t next_x(size_t x, size_t width) {
return (x + 1) * ((x + 1) < width);
}
inline size_t next_y(size_t x, size_t y) {
return y + (x == 0);
}
inline bool at_end(size_t y, size_t height) {
return y < height;
}
inline bool end_row(size_t x, size_t width) {
return x == width - 1;
}
void dump(const std::string &msg, Matrix &map, int show_x=-1, int show_y=-1);
template<typename MAT>
struct each_cell_t {
size_t x = ~0;
size_t y = ~0;
size_t width = 0;
size_t height = 0;
each_cell_t(MAT &mat)
{
height = matrix::height(mat);
width = matrix::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
return at_end(y, height);
}
};
template<typename MAT>
struct viewport_t {
Point start;
// this is the point in the map
size_t x;
size_t y;
// this is the point inside the box, start at 0
size_t view_x = ~0;
size_t view_y = ~0;
// viewport width/height
size_t width;
size_t height;
viewport_t(MAT &mat, Point start, int max_x, int max_y) :
start(start),
x(start.x-1),
y(start.y-1)
{
width = std::min(size_t(max_x), matrix::width(mat) - start.x);
height = std::min(size_t(max_y), matrix::height(mat) - start.y);
fmt::println("viewport_t max_x, max_y {},{} vs matrix {},{}, x={}, y={}",
max_x, max_y, matrix::width(mat), matrix::height(mat), x, y);
}
bool next() {
y = next_y(x, y);
x = next_x(x, width);
view_x = next_x(view_x, width);
view_y = next_y(view_x, view_y);
return at_end(y, height);
}
};
using viewport = viewport_t<Matrix>;
using each_cell = each_cell_t<Matrix>;
template<typename MAT>
struct each_row_t {
size_t x = ~0;
size_t y = ~0;
size_t width = 0;
size_t height = 0;
bool row = false;
each_row_t(MAT &mat) {
height = matrix::height(mat);
width = matrix::width(mat);
}
bool next() {
x = next_x(x, width);
y = next_y(x, y);
row = end_row(x, width);
return at_end(y, height);
}
};
using each_row = each_row_t<Matrix>;
template<typename MAT>
struct box_t {
size_t from_x;
size_t from_y;
size_t x = 0; // these are set in constructor
size_t y = 0; // again, no fancy ~ trick needed
size_t left = 0;
size_t top = 0;
size_t right = 0;
size_t bottom = 0;
box_t(MAT &mat, size_t at_x, size_t at_y, size_t size) :
box_t(mat, at_x, at_y, size, size) {
}
box_t(MAT &mat, size_t at_x, size_t at_y, size_t width, size_t height) :
from_x(at_x), from_y(at_y)
{
size_t h = matrix::height(mat);
size_t w = matrix::width(mat);
// keeps it from going below zero
// need extra -1 to compensate for the first next()
left = max(from_x, width) - width;
x = left - 1; // must be -1 for next()
// keeps it from going above width
right = min(from_x + width + 1, w);
// same for these two
top = max(from_y, height) - height;
y = top - (left == 0);
bottom = min(from_y + height + 1, h);
}
bool next() {
// calc next but allow to go to 0 for next
x = next_x(x, right);
// x will go to 0, which signals new line
y = next_y(x, y); // this must go here
// if x==0 then this moves it to min_x
x = max(x, left);
// and done
return at_end(y, bottom);
}
float distance() {
int dx = from_x - x;
int dy = from_y - y;
return sqrt((dx * dx) + (dy * dy));
}
};
using box = box_t<Matrix>;
template<typename MAT>
struct compass_t {
size_t x = 0; // these are set in constructor
size_t y = 0; // again, no fancy ~ trick needed
array<int, 4> x_dirs{0, 1, 0, -1};
array<int, 4> y_dirs{-1, 0, 1, 0};
size_t max_dirs=0;
size_t dir = ~0;
compass_t(MAT &mat, size_t x, size_t y) :
x(x), y(y)
{
array<int, 4> x_in{0, 1, 0, -1};
array<int, 4> y_in{-1, 0, 1, 0};
for(size_t i = 0; i < 4; i++) {
int nx = x + x_in[i];
int ny = y + y_in[i];
if(matrix::inbounds(mat, nx, ny)) {
x_dirs[max_dirs] = nx;
y_dirs[max_dirs] = ny;
max_dirs++;
}
}
}
bool next() {
dir++;
if(dir < max_dirs) {
x = x_dirs[dir];
y = y_dirs[dir];
return true;
} else {
return false;
}
}
};
using compass = compass_t<Matrix>;
struct flood {
Matrix &mat;
Point start;
int old_val;
int new_val;
queue<Point> q;
Point current_loc;
int x;
int y;
matrix::compass dirs;
flood(Matrix &mat, Point start, int old_val, int new_val);
bool next();
bool next_working();
};
struct line {
int x;
int y;
int x1;
int y1;
int sx;
int sy;
int dx;
int dy;
int error;
line(Point start, Point end);
bool next();
};
template<typename MAT>
struct circle_t {
float center_x;
float center_y;
float radius = 0.0f;
int y = 0;
int dx = 0;
int dy = 0;
int left = 0;
int right = 0;
int top = 0;
int bottom = 0;
int width = 0;
int height = 0;
circle_t(MAT &mat, Point center, float radius) :
center_x(center.x), center_y(center.y), radius(radius)
{
width = matrix::width(mat);
height = matrix::height(mat);
top = max(int(floor(center_y - radius)), 0);
bottom = min(int(floor(center_y + radius)), height - 1);
y = top;
}
bool next() {
y++;
if(y <= bottom) {
dy = y - center_y;
dx = floor(sqrt(radius * radius - dy * dy));
left = max(0, int(center_x) - dx);
right = min(width, int(center_x) + dx + 1);
return true;
} else {
return false;
}
}
};
using circle = circle_t<Matrix>;
template<typename MAT>
struct rectangle_t {
int x;
int y;
int top;
int left;
int width;
int height;
int right;
int bottom;
rectangle_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
top(start_y),
left(start_x),
width(width),
height(height)
{
size_t h = matrix::height(mat);
size_t w = matrix::width(mat);
y = start_y - 1;
x = left - 1; // must be -1 for next()
right = min(start_x + width, w);
y = start_y;
bottom = min(start_y + height, h);
}
bool next() {
x = next_x(x, right);
y = next_y(x, y);
x = max(x, left);
return at_end(y, bottom);
}
};
using rectangle = rectangle_t<Matrix>;
template<typename MAT>
struct rando_rect_t {
int x;
int y;
int x_offset;
int y_offset;
rectangle_t<MAT> it;
rando_rect_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
it{mat, start_x, start_y, width, height}
{
x_offset = Random::uniform(0, int(width));
y_offset = Random::uniform(0, int(height));
}
bool next() {
bool done = it.next();
x = it.left + ((it.x + x_offset) % it.width);
y = it.top + ((it.y + y_offset) % it.height);
return done;
}
};
using rando_rect = rando_rect_t<Matrix>;
}