#include "map.hpp" #include "dbc.hpp" #include "rand.hpp" #include #include #include #include #include "matrix.hpp" using std::vector, std::pair; using namespace fmt; Map::Map(size_t width, size_t height) : $width(width), $height(height), $tiles(width, height), $walls(height, matrix::Row(width, SPACE_VALUE)), $paths(width, height) {} Map::Map(Matrix &walls, Pathing &paths) : $tiles(matrix::width(walls), matrix::height(walls)), $walls(walls), $paths(paths) { $width = matrix::width(walls); $height = matrix::height(walls); } void Map::make_paths() { INVARIANT(); $paths.compute_paths($walls); } bool Map::inmap(size_t x, size_t y) { return x < $width && y < $height; } void Map::set_target(const Point &at, int value) { $paths.set_target(at, value); } void Map::clear_target(const Point &at) { $paths.clear_target(at); } Point Map::place_entity(size_t room_index) { dbc::check(room_index < $rooms.size(), "room_index is out of bounds, not enough rooms"); Room &start = $rooms[room_index]; size_t size = std::max(start.width, start.height); for(matrix::box it{$walls, start.x, start.y, size}; it.next();) { if(!iswall(it.x, it.y)) return {it.x, it.y}; } dbc::sentinel("DIDN'T FIND AN OPEN SPACE!"); return {start.x, start.y}; } bool Map::iswall(size_t x, size_t y) { return $walls[y][x] == WALL_VALUE; } void Map::dump(int show_x, int show_y) { matrix::dump("WALLS", walls(), show_x, show_y); matrix::dump("PATHS", paths(), show_x, show_y); } bool Map::can_move(Point move_to) { return inmap(move_to.x, move_to.y) && !iswall(move_to.x, move_to.y); } Point Map::map_to_camera(const Point &loc, const Point &cam_orig) { return {loc.x - cam_orig.x, loc.y - cam_orig.y}; } Point Map::center_camera(const Point &around, size_t view_x, size_t view_y) { int high_x = int(width() - view_x); int high_y = int(height() - view_y); int center_x = int(around.x - view_x / 2); int center_y = int(around.y - view_y / 2); size_t start_x = high_x > 0 ? std::clamp(center_x, 0, high_x) : 0; size_t start_y = high_y > 0 ? std::clamp(center_y, 0, high_y) : 0; return {start_x, start_y}; } /* * Finds the next optimal neighbor in the path * using either a direct or random method. * * Both modes will pick a random direction to start * looking for the next path, then it goes clock-wise * from there. * * In the direct method it will attempt to find * a path that goes 1 lower in the dijkstra map * path, and if it can't find that it will go to * a 0 path (same number). * * In random mode it will pick either the next lower * or the same level depending on what it finds first. * Since the starting direction is random this will * give it a semi-random walk that eventually gets to * the target. * * In map generation this makes random paths and carves * up the space to make rooms more irregular. * * When applied to an enemy they will either go straight * to the player (random=false) or they'll wander around * drunkenly gradually reaching the player, and dodging * in and out. */ bool Map::neighbors(Point &out, bool random) { Matrix &paths = $paths.$paths; bool zero_found = false; // just make a list of the four directions std::array dirs{{ {out.x,out.y-1}, // north {out.x+1,out.y}, // east {out.x,out.y+1}, // south {out.x-1,out.y} // west }}; // get the current dijkstra number int cur = paths[out.y][out.x]; // pick a random start of directions // BUG: is uniform inclusive of the dir.size()? int rand_start = Random::uniform(0, dirs.size()); // go through all possible directions for(size_t i = 0; i < dirs.size(); i++) { // but start at the random start, effectively randomizing // which valid direction to go // BUG: this might be wrong given the above ranom from 0-size Point dir = dirs[(i + rand_start) % dirs.size()]; if(!inmap(dir.x, dir.y)) continue; //skip unpathable stuff int weight = cur - paths[dir.y][dir.x]; if(weight == 1) { // no matter what we follow direct paths out = dir; return true; } else if(random && weight == 0) { // if random is selected and it's a 0 path take it out = dir; return true; } else if(weight == 0) { // otherwise keep the last zero path for after out = dir; zero_found = true; } } // if we reach this then either zero was found and // zero_found is set true, or it wasn't and nothing found return zero_found; } bool Map::INVARIANT() { using dbc::check; check($walls.size() == height(), "walls wrong height"); check($walls[0].size() == width(), "walls wrong width"); check($paths.$width == width(), "in Map paths width don't match map width"); check($paths.$height == height(), "in Map paths height don't match map height"); for(auto room : $rooms) { check(int(room.x) >= 0 && int(room.y) >= 0, format("room depth={} has invalid position {},{}", room.depth, room.x, room.y)); check(int(room.width) > 0 && int(room.height) > 0, format("room depth={} has invalid dims {},{}", room.depth, room.width, room.height)); } return true; } void Map::load_tiles() { $tiles.load($walls); } void Map::expand() { // adjust width first for(auto &row : $walls) { row.insert(row.begin(), WALL_VALUE); row.push_back(WALL_VALUE); } $width = matrix::width($walls); // then add two new rows top/bottom of that new width $walls.insert($walls.begin(), matrix::Row($width, WALL_VALUE)); $walls.push_back(matrix::Row($width, WALL_VALUE)); // now we have the new height $height = matrix::height($walls); // reset the pathing and tiles and done $paths = Pathing($width, $height); $tiles = TileMap($width, $height); }