#include "map.hpp" #include "dbc.hpp" #include #include #include using std::vector, std::pair; using namespace fmt; void dump_map(const std::string &msg, Matrix &map) { println("----------------- {}", msg); for(auto row : map) { for(auto col : row) { print("{} ", col); } print("\n"); } } inline void add_neighbors(PairList &neighbors, Matrix &closed, size_t j, size_t i) { size_t h = closed.size(); size_t w = closed[0].size(); vector rows{j - 1, j, j + 1}; vector cols{i - 1, i, i + 1}; for(auto row : rows) { for(auto col : cols) { if((0 <= row && row < h) && (0 <= col && col < w) && closed[row][col] == 0) { closed[row][col] = 1; neighbors.push_back({.j=row, .i=col}); } } } } Map::Map(size_t width, size_t height) : m_limit(1000) { m_walls = Matrix(height, MatrixRow(width, 1)); m_input_map = Matrix(height, MatrixRow(width, 1)); } void Map::make_paths() { size_t h = m_input_map.size(); size_t w = m_input_map[0].size(); // Initialize the new array with every pixel at limit distance // NOTE: this is normally ones() * limit int limit = m_limit == 0 ? h * w : m_limit; Matrix new_arr = Matrix(h, MatrixRow(w, limit)); Matrix closed = m_walls; PairList starting_pixels; PairList open_pixels; // First pass: Add starting pixels and put them in closed for(size_t counter = 0; counter < h * w; counter++) { size_t i = counter % w; size_t j = counter / w; if(m_input_map[j][i] == 0) { new_arr[j][i] = 0; closed[j][i] = 1; starting_pixels.push_back({.j=j,.i=i}); } } // Second pass: Add border to open for(auto sp : starting_pixels) { add_neighbors(open_pixels, closed, sp.j, sp.i); } // Third pass: Iterate filling in the open list int counter = 1; // leave this here so it's available below for(; counter < limit && !open_pixels.empty(); ++counter) { PairList next_open; for(auto sp : open_pixels) { new_arr[sp.j][sp.i] = counter; add_neighbors(next_open, closed, sp.j, sp.i); } open_pixels = next_open; } // Last pass: flood last pixels for(auto sp : open_pixels) { new_arr[sp.j][sp.i] = counter; } m_paths = new_arr; } void Map::make_room(size_t origin_x, size_t origin_y, size_t w, size_t h) { dbc::check(origin_x < width(), "x out of bounds"); dbc::check(origin_y < height(), "x out of bounds"); dbc::check(w < width(), "x out of bounds"); dbc::check(h < height(), "x out of bounds"); for(size_t y = origin_y; y < origin_y + h; ++y) { for(size_t x = origin_x; x < origin_x + w; ++x) { m_walls[y][x] = 0; } } } struct Partition; struct Partition { size_t x = 0; size_t y = 0; size_t width = 0; size_t height = 0; std::vector children; }; inline int make_split(std::mt19937 &gen, Partition &cur, bool horiz) { if(horiz) { size_t quarter = cur.height / 4; // vertical split, pick a random horizontal location std::uniform_int_distribution rhoriz(cur.y + quarter, cur.height - quarter); return rhoriz(gen); } else { size_t quarter = cur.width / 4; // horizontal split, pick a random vertical location std::uniform_int_distribution rvert(cur.x + quarter, cur.width - quarter); return rvert(gen); } } void Map::generate() { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution rsplit(0, 1); Partition root{ .x = 1, .y = 1, .width = width() - 2, .height = height() - 2 }; Partition &cur = root; bool horiz = rsplit(gen); for(int i = 0; i < 1; i++) { int split = make_split(gen, cur, horiz); if(horiz) { println("HORIZ split={}, x={}, y={}, w={}, h={}", split, cur.x, cur.y, cur.width, cur.height); make_room(cur.x, cur.y, cur.width, split - 1); make_room(cur.x, cur.y + split, cur.width, cur.height - split); } else { println("VERT split={}, x={}, y={}, w={}, h={}", split, cur.x, cur.y, cur.width, cur.height); make_room(cur.x, cur.y, split-1, cur.height); make_room(cur.x + split, cur.y, cur.width - split, cur.height); } horiz = !horiz; } }