#include "map.hpp" #include "dbc.hpp" #include #include #include #include using std::vector, std::pair; using namespace fmt; void dump_map(const std::string &msg, Matrix &map) { println("----------------- {}", msg); for(auto row : map) { for(auto col : row) { print("{} ", col); } print("\n"); } } inline void add_neighbors(PairList &neighbors, Matrix &closed, size_t j, size_t i) { size_t h = closed.size(); size_t w = closed[0].size(); vector rows{j - 1, j, j + 1}; vector cols{i - 1, i, i + 1}; for(auto row : rows) { for(auto col : cols) { if((0 <= row && row < h) && (0 <= col && col < w) && closed[row][col] == 0) { closed[row][col] = 1; neighbors.push_back({.j=row, .i=col}); } } } } Map::Map(size_t width, size_t height) : m_limit(1000) { m_walls = Matrix(height, MatrixRow(width, 1)); m_input_map = Matrix(height, MatrixRow(width, 1)); } void Map::make_paths() { size_t h = m_input_map.size(); size_t w = m_input_map[0].size(); // Initialize the new array with every pixel at limit distance // NOTE: this is normally ones() * limit int limit = m_limit == 0 ? h * w : m_limit; Matrix new_arr = Matrix(h, MatrixRow(w, limit)); Matrix closed = m_walls; PairList starting_pixels; PairList open_pixels; // First pass: Add starting pixels and put them in closed for(size_t counter = 0; counter < h * w; counter++) { size_t i = counter % w; size_t j = counter / w; if(m_input_map[j][i] == 0) { new_arr[j][i] = 0; closed[j][i] = 1; starting_pixels.push_back({.j=j,.i=i}); } } // Second pass: Add border to open for(auto sp : starting_pixels) { add_neighbors(open_pixels, closed, sp.j, sp.i); } // Third pass: Iterate filling in the open list int counter = 1; // leave this here so it's available below for(; counter < limit && !open_pixels.empty(); ++counter) { PairList next_open; for(auto sp : open_pixels) { new_arr[sp.j][sp.i] = counter; add_neighbors(next_open, closed, sp.j, sp.i); } open_pixels = next_open; } // Last pass: flood last pixels for(auto sp : open_pixels) { new_arr[sp.j][sp.i] = counter; } m_paths = new_arr; } void Map::make_room(size_t origin_x, size_t origin_y, size_t w, size_t h) { println("MAKE ROOM x={}, y={}, w={}, h={}", origin_x, origin_y, w, h); dbc::pre("x out of bounds", origin_x < width()); dbc::pre("y out of bounds", origin_y < height()); dbc::pre("w out of bounds", w <= width()); dbc::pre("h out of bounds", h <= height()); for(size_t y = origin_y; y < origin_y + h; ++y) { dbc::check(y < m_walls.size(), "y is out of bounds"); for(size_t x = origin_x; x < origin_x + w; ++x) { dbc::check(x < m_walls[y].size(), "x is out of bounds"); m_walls[y][x] = 0; } } } struct Partition; struct Partition { size_t x = 0; size_t y = 0; size_t width = 0; size_t height = 0; std::vector next; }; inline int make_split(std::mt19937 &gen, Partition &cur, bool horiz) { println("MAKE SPLIT horiz={}, y={}, w={}, h={}", horiz, cur.y, cur.width, cur.height); size_t dimension = horiz ? cur.height : cur.width; int min = dimension / 4; int max = dimension - min; println("dimension={}, min={}, max={}", dimension, min, max); std::uniform_int_distribution rand_dim(min, max); return rand_dim(gen); } void partition_map(std::mt19937 &gen, Partition &cur, int depth) { println(">>>> DEPTH: {}", depth); std::uniform_int_distribution rsplit(0, 1); bool horiz = cur.width > cur.height ? false : true; int split = make_split(gen, cur, horiz); Partition left; Partition right; if(horiz) { println("HORIZ split={}, x={}, y={}, w={}, h={}", split, cur.x, cur.y, cur.width, cur.height); dbc::check(split > 0, "split is not > 0"); dbc::check(split < int(cur.height), "split is too big!"); left = { .x = cur.x, .y = cur.y, .width = cur.width, .height = size_t(split - 1) }; right = { .x = cur.x, .y = cur.y + split, .width = cur.width, .height = size_t(cur.height - split) }; } else { println("VERT split={}, x={}, y={}, w={}, h={}", split, cur.x, cur.y, cur.width, cur.height); dbc::check(split > 0, "split is not > 0"); dbc::check(split < int(cur.width), "split is too big!"); left = { .x = cur.x, .y = cur.y, .width = size_t(split-1), .height = cur.height }; right = { .x = cur.x + split, .y = cur.y, .width = size_t(cur.width - split), .height = cur.height }; } if(depth > 0 && left.width > 4 && left.height > 4) { println("DOWN LEFT h={}, w={}", left.height, left.width); partition_map(gen, left, depth-1); cur.next.push_back(left); } else { println("!!!!LEAF LEFT ROOM h={}, w={}", left.height, left.width); } if(depth > 0 && right.width >= 4 && right.height >= 4) { println("DOWN RIGHT h={}, w={}", right.height, right.width); partition_map(gen, right, depth-1); cur.next.push_back(right); } else { println("!!!!LEAF RIGHT ROOM h={}, w={}", right.height, right.width); } } void draw_map(Map *map, Partition &cur) { if(cur.x + cur.width <= map->width() && cur.y + cur.height <= map->height()) { println("CUR NEXT SIZE: {}", cur.next.size()); if(cur.next.size() == 1) { draw_map(map, cur.next[0]); // left } else if(cur.next.size() == 2) { draw_map(map, cur.next[0]); // left draw_map(map, cur.next[1]); // right } else { println("LEAF NODE NO CHILDREN x={}, y={}, w={}, h={}", cur.x, cur.y, cur.width, cur.height); map->make_room(cur.x+1, cur.y+1, cur.width-2, cur.height-2); } } else { println("ABORT in draw_map, x={}, y={}, w={}, h={}, map.w={}, map.h={}", cur.x, cur.y, cur.width, cur.height, map->width(), map->height()); } } void Map::generate() { std::random_device rd; std::mt19937 gen(rd()); Partition root{ .x = 0, .y = 0, .width = width(), .height = height() }; partition_map(gen, root, 6); draw_map(this, root); // left }