#include #include #include #include "matrix.hpp" #include #include "fenster/fenster.h" #include "dbc.hpp" using matrix::Matrix; using namespace fmt; Matrix MAP{ {1,1,1,1,1,1,1,1,1}, {1,0,1,0,0,0,0,0,1}, {1,0,1,0,0,1,1,0,1}, {1,0,0,0,0,0,0,0,1}, {1,1,0,0,0,0,0,0,1}, {1,0,0,1,1,1,0,0,1}, {1,0,0,0,1,0,0,0,1}, {1,0,0,0,0,0,1,1,1}, {1,1,1,1,1,1,1,1,1} }; const int SCREEN_HEIGHT=480; const int SCREEN_WIDTH=SCREEN_HEIGHT * 2; const int THREED_VIEW_WIDTH=480; const int THREED_VIEW_HEIGHT=480; const int MAP_SIZE=matrix::width(MAP); const int TILE_SIZE=(SCREEN_WIDTH/2) / MAP_SIZE; const float FOV = std::numbers::pi / 3.0; const float HALF_FOV = FOV / 2; const int CASTED_RAYS=120; const float STEP_ANGLE = FOV / CASTED_RAYS; const int MAX_DEPTH = MAP_SIZE * TILE_SIZE; const float SCALE = (SCREEN_WIDTH / 2) / CASTED_RAYS; float player_x = SCREEN_WIDTH / 4; float player_y = SCREEN_WIDTH / 4; float player_angle = std::numbers::pi; #define rgba_color(r,g,b,a) (b<<(0*8))|(g<<(1*8))|(r<<(2*8))|(a<<(3*8)) #define gray_color(c) rgba_color(c, c, c, 255) void draw_rect(Fenster &window, Point pos, Point size, uint32_t color) { size_t x_start = size_t(pos.x); size_t y_start = size_t(pos.y); size_t width = size_t(size.x); size_t height = size_t(size.y); dbc::check(x_start <= size_t(window.f.width), format("pos.x {} is greater than width {}", x_start, window.f.width)); dbc::check(y_start <= size_t(window.f.height), format("pos.y {} is greater than height {}", y_start, window.f.height)); dbc::check(x_start + width <= size_t(window.f.width), format("size width {} is greater than width {}", x_start + width, window.f.width)); dbc::check(y_start + height <= size_t(window.f.height), format("size height {} is greater than height {}", y_start + height, window.f.height)); for(size_t y = y_start; y < y_start + height; y++) { for(size_t x = x_start; x < x_start + width; x++) { window.px(x, y) = color; } } } void draw_map_rect(Fenster &window, int x, int y, uint32_t color) { draw_rect(window, {size_t(x * TILE_SIZE), size_t(y * TILE_SIZE)}, {size_t(TILE_SIZE-1), size_t(TILE_SIZE-1)}, color); } void draw_map(Fenster &window, Matrix &map) { uint32_t light_grey = gray_color(191); uint32_t dark_grey = gray_color(65); for(size_t y = 0; y < matrix::height(map); y++) { for(size_t x = 0; x < matrix::width(map); x++) { draw_map_rect(window, x, y, map[y][x] == 1 ? light_grey : dark_grey); } } } void draw_line(Fenster &window, Point start, Point end, uint32_t color) { int x = int(start.x); int y = int(start.y); int x1 = int(end.x); int y1 = int(end.y); int dx = std::abs(x1 - x); int sx = x < x1 ? 1 : -1; int dy = std::abs(y1 - y) * -1; int sy = y < y1 ? 1 : -1; int error = dx + dy; while(x != x1 || y != y1) { int e2 = 2 * error; if(e2 >= dy) { error = error + dy; x = x + sx; } if(e2 <= dx) { error = error + dx; y = y + sy; } window.px(x, y) = color; } } void clear(Fenster &window) { for(int y = 0; y < window.f.height; y++) { for(int x = 0; x < window.f.width; x++) { window.px(x, y) = 0; } } } void draw_map_rays(Fenster &window, int col, int row, Point target) { draw_map_rect(window, col, row, rgba_color(100, 20, 20, 255)); draw_line(window, {size_t(player_x), size_t(player_y)}, target, rgba_color(200, 20, 20, 255)); } void ray_casting(Fenster &window, Matrix& map) { int w = THREED_VIEW_WIDTH; int h = THREED_VIEW_HEIGHT; // x and y start position double posX = player_x / TILE_SIZE; double posY = player_y / TILE_SIZE; // initial direction vector double dirX = std::cos(player_angle); double dirY = 0; // the 2d raycaster version of camera plane double planeX = 0; double planeY = 0.66; // time of current frame double time = 0; // time of previous frame double oldTime = 0; for(int x = 0; x < w; x++) { // calculate ray position and direction double cameraX = 2 * x / double(w) - 1; // x-coord in camera space double rayDirX = dirX + planeX * cameraX; double rayDirY = dirY + planeY * cameraX; // which box of the map we're in int mapX = int(posX); int mapY = int(posY); // length of ray from current pos to next x or y-side double sideDistX; double sideDistY; // length of ray from one x or y-side to next x or y-side double deltaDistX = (rayDirX == 0) ? 1e30 : std::abs(1.0 / rayDirX); double deltaDistY = (rayDirY == 0) ? 1e30 : std::abs(1.0 / rayDirY); double perpWallDist; int stepX = 0; int stepY = 0; int hit = 0; int side = 0; // calculate step and initial sideDist if(rayDirX < 0) { stepX = -1; sideDistX = (posX - mapX) * deltaDistX; } else { stepX = 1; sideDistX = (mapX + 1.0 - posX) * deltaDistX; } if(rayDirY < 0) { stepY = -1; sideDistY = (posY - mapY) * deltaDistY; } else { stepY = 1; sideDistY = (mapY + 1.0 - posY) * deltaDistY; } // perform DDA while(hit == 0) { if(sideDistX < sideDistY) { sideDistX += deltaDistX; mapX += stepX; side = 0; } else { sideDistY += deltaDistY; mapY += stepY; side = 1; } if(map[mapY][mapX] > 0) hit = 1; } if(side == 0) { perpWallDist = (sideDistX - deltaDistX); } else { perpWallDist = (sideDistY - deltaDistY); } int lineHeight = int(h / perpWallDist); int drawStart = -lineHeight / 2 + h / 2; if(drawStart < 0) drawStart = 0; int drawEnd = lineHeight / 2 + h / 2; if(drawEnd >= h) drawEnd = h - 1; uint32_t color = gray_color(std::min(lineHeight, 255)); draw_line(window, {size_t(x + THREED_VIEW_WIDTH), size_t(drawStart)}, {size_t(x + THREED_VIEW_WIDTH), size_t(drawEnd)}, color); } } void map_view_casting(Fenster &window, Matrix& map) { float start_angle = player_angle - HALF_FOV; for(int ray = 0; ray < CASTED_RAYS; ray++, start_angle += STEP_ANGLE) { for(int depth = 1; depth < MAX_DEPTH; depth++) { float target_x = player_x - std::sin(start_angle) * depth; float target_y = player_y + std::cos(start_angle) * depth; int col = int(target_x / TILE_SIZE); int row = int(target_y / TILE_SIZE); if(map[row][col] == 1) { draw_map_rays(window, col, row, {size_t(target_x), size_t(target_y)}); break; } } } } void draw_ceiling_floor(Fenster &window) { draw_rect(window, {size_t(window.width() / 2), 0}, {size_t(window.height()), size_t(window.height() / 2)}, gray_color(100)); draw_rect(window, {size_t(window.width() / 2), size_t(window.height() / 2)}, {size_t(window.width() / 2), size_t(window.height() / 2)}, gray_color(200)); } void draw_everything(Fenster &window) { clear(window); draw_map(window, MAP); draw_ceiling_floor(window); map_view_casting(window, MAP); ray_casting(window, MAP); } bool collision(float x, float y) { int col = int(x / TILE_SIZE); int row = int(y / TILE_SIZE); return MAP[row][col] == 1; } int main() { Fenster window(SCREEN_WIDTH, SCREEN_HEIGHT, "Fenscaster"); while(window.loop(60)) { draw_everything(window); float x = player_x; float y = player_y; if(window.key('Q')) { player_angle -= 0.1; } else if(window.key('E')) { player_angle += 0.1; } if(window.key('W')) { x += -1 * std::sin(player_angle) * 5; y += std::cos(player_angle) * 5; } else if(window.key('S')) { x -= -1 * std::sin(player_angle) * 5; y -= std::cos(player_angle) * 5; } if(window.key('D')) { x += -1 * std::sin(player_angle + std::numbers::pi * 0.5) * 5; y += std::cos(player_angle + std::numbers::pi * 0.5) * 5; } else if(window.key('A')) { x -= -1 * std::sin(player_angle + std::numbers::pi * 0.5) * 5; y -= std::cos(player_angle + std::numbers::pi * 0.5) * 5; } if(!collision(x, y)) { player_x = x; player_y = y; } } return 0; } #if defined(_WIN32) int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) { (void)hInstance, (void)hPrevInstance, (void)pCmdLine, (void)nCmdShow; return main(); } #endif