#include "dbc.hpp" #include "goap.hpp" #include "ai_debug.hpp" #include "stats.hpp" #include namespace ai { using namespace nlohmann; using namespace dbc; bool is_subset(State& source, State& target) { State result = source & target; return result == target; } void Action::needs(int name, bool val) { if(val) { $positive_preconds[name] = true; $negative_preconds[name] = false; } else { $negative_preconds[name] = true; $positive_preconds[name] = false; } } void Action::effect(int name, bool val) { if(val) { $positive_effects[name] = true; $negative_effects[name] = false; } else { $negative_effects[name] = true; $positive_effects[name] = false; } } void Action::ignore(int name) { $positive_preconds[name] = false; $negative_preconds[name] = false; } bool Action::can_effect(State& state) { return ((state & $positive_preconds) == $positive_preconds) && ((state & $negative_preconds) == ALL_ZERO); } State Action::apply_effect(State& state) { return (state | $positive_effects) & ~$negative_effects; } int distance_to_goal(State from, State to) { auto result = from ^ to; int count = result.count(); return count; } Script reconstruct_path(std::unordered_map& came_from, Action& current) { Script total_path{current}; bool final_found = false; for(size_t i = 0; i <= came_from.size() && came_from.contains(current); i++) { current = came_from.at(current); if(current != FINAL_ACTION) { total_path.push_front(current); } else { final_found = true; } } // this here temporarily while I figure out cycle detects/prevention if(!final_found && total_path[0] != FINAL_ACTION) { auto error = fmt::format("!!!!! You may have a cycle in your json. No FINAL found. Here's the path: "); for(auto& action : total_path) error += fmt::format("{} ", action.name); dbc::sentinel(error); } return total_path; } inline int h(State start, State goal) { return distance_to_goal(start, goal); } inline int d(State start, State goal) { return distance_to_goal(start, goal); } using FScorePair = std::pair; auto FScorePair_cmp = [](const FScorePair& l, const FScorePair& r) { return l.first < r.first; }; using FScoreQueue = std::vector; ActionState find_lowest(std::unordered_map& open_set, FScoreQueue& f_scores) { check(!open_set.empty(), "open set can't be empty in find_lowest"); for(auto& [score, astate] : f_scores) { if(open_set.contains(astate)) { return astate; } } dbc::sentinel("lowest not found!"); } ActionPlan plan_actions(std::vector& actions, State start, State goal) { int loop_count = 0; std::unordered_map open_set; std::unordered_map came_from; std::unordered_map g_score; FScoreQueue f_score; std::unordered_map closed_set; ActionState current{FINAL_ACTION, start}; g_score.insert_or_assign(start, 0); f_score.emplace_back(h(start, goal), current); std::push_heap(f_score.begin(), f_score.end(), FScorePair_cmp); open_set.insert_or_assign(current, h(start, goal)); while(!open_set.empty()) { loop_count++; // current := the node in openSet having the lowest fScore[] value current = find_lowest(open_set, f_score); if(is_subset(current.state, goal)) { fmt::println("YES CLOSED COUNT: {}", loop_count); return {true, reconstruct_path(came_from, current.action)}; } open_set.erase(current); closed_set.insert_or_assign(current.state, true); for(auto& neighbor_action : actions) { // calculate the State being current/neighbor if(!neighbor_action.can_effect(current.state)) continue; auto neighbor = neighbor_action.apply_effect(current.state); if(closed_set.contains(neighbor)) { fmt::println("closed_set: {}, open_set: {}, f_score: {}", closed_set.size(), open_set.size(), f_score.size()); continue; } else { loop_count++; } int d_score = d(current.state, neighbor) + neighbor_action.cost; int tentative_g_score = g_score[current.state] + d_score; int neighbor_g_score = g_score.contains(neighbor) ? g_score[neighbor] : SCORE_MAX; if(tentative_g_score < neighbor_g_score) { came_from.insert_or_assign(neighbor_action, current.action); g_score.insert_or_assign(neighbor, tentative_g_score); // open_set gets the fScore ActionState neighbor_as{neighbor_action, neighbor}; int score = tentative_g_score + h(neighbor, goal); // could maintain lowest here and avoid searching all things f_score.emplace_back(score, neighbor_as); std::push_heap(f_score.begin(), f_score.end(), FScorePair_cmp); // this maybe doesn't need score open_set.insert_or_assign(neighbor_as, score); } } } fmt::println("YES CLOSED COUNT: {}", loop_count); return {is_subset(current.state, goal), reconstruct_path(came_from, current.action)}; } }