#include "constants.hpp" #include "pathing.hpp" #include "dbc.hpp" #include using std::vector; inline void add_neighbors(PointList &neighbors, Matrix &closed, size_t y, size_t x) { for(matrix::box it{closed, x, y, 1}; it.next();) { if(closed[it.y][it.x] == 0) { closed[it.y][it.x] = 1; neighbors.emplace_back(it.x, it.y); } } } /* * Used https://github.com/HenrYxZ/dijkstra-map as a reference. */ void Pathing::compute_paths(Matrix &walls) { INVARIANT(); dbc::check(walls[0].size() == $width, fmt::format("Pathing::compute_paths called with walls.width={} but paths $width={}", walls[0].size(), $width)); dbc::check(walls.size() == $height, fmt::format("Pathing::compute_paths called with walls.height={} but paths $height={}", walls[0].size(), $height)); // Initialize the new array with every pixel at limit distance matrix::assign($paths, WALL_PATH_LIMIT); Matrix closed = walls; PointList starting_pixels; PointList open_pixels; // First pass: Add starting pixels and put them in closed for(size_t counter = 0; counter < $height * $width; counter++) { size_t x = counter % $width; size_t y = counter / $width; if($input[y][x] == 0) { $paths[y][x] = 0; closed[y][x] = 1; starting_pixels.emplace_back(x,y); } } // Second pass: Add border to open for(auto sp : starting_pixels) { add_neighbors(open_pixels, closed, sp.y, sp.x); } // Third pass: Iterate filling in the open list int counter = 1; // leave this here so it's available below for(; counter < WALL_PATH_LIMIT && !open_pixels.empty(); ++counter) { PointList next_open; for(auto sp : open_pixels) { $paths[sp.y][sp.x] = counter; add_neighbors(next_open, closed, sp.y, sp.x); } open_pixels = next_open; } // Last pass: flood last pixels for(auto sp : open_pixels) { $paths[sp.y][sp.x] = counter; } } void Pathing::set_target(const Point &at, int value) { // FUTURE: I'll eventually allow setting this to negatives for priority $input[at.y][at.x] = value; } void Pathing::clear_target(const Point &at) { $input[at.y][at.x] = 1; } bool Pathing::random_walk(Point &out, bool random, int direction) { bool zero_found = false; // just make a list of the four directions std::array dirs{{ {out.x,out.y-1}, // north {out.x+1,out.y}, // east {out.x,out.y+1}, // south {out.x-1,out.y} // west }}; // get the current dijkstra number int cur = $paths[out.y][out.x]; // pick a random start of directions // BUG: is uniform inclusive of the dir.size()? int rand_start = Random::uniform(0, dirs.size()); // go through all possible directions for(size_t i = 0; i < dirs.size(); i++) { // but start at the random start, effectively randomizing // which valid direction to go // BUG: this might be wrong given the above ranom from 0-size Point dir = dirs[(i + rand_start) % dirs.size()]; if(!shiterator::inbounds($paths, dir.x, dir.y)) continue; //skip unpathable stuff int weight = cur - $paths[dir.y][dir.x]; if(weight == direction) { // no matter what we follow direct paths out = dir; return true; } else if(random && weight == 0) { // if random is selected and it's a 0 path take it out = dir; return true; } else if(weight == 0) { // otherwise keep the last zero path for after out = dir; zero_found = true; } } // if we reach this then either zero was found and // zero_found is set true, or it wasn't and nothing found return zero_found; } bool Pathing::INVARIANT() { using dbc::check; check($paths.size() == $height, "paths wrong height"); check($paths[0].size() == $width, "paths wrong width"); check($input.size() == $height, "input wrong height"); check($input[0].size() == $width, "input wrong width"); return true; }